The statement that would be held true for an acidic solution would be option C. The molarity or concentration of the hydronium ions would be more than that of the hydroxide ions. As the acidity of a solution increases as there is a greater amount of H+ or H3O+ ions present, within it. This is will give us a low pH and thus is quite acidic.
If the concentrations of the OH- and H3O+ are the same then the solution would be neutral, and if the opposite is true. The concentration of OH- is more than H3O+ than the solution would be basic.
Answer:
(c.) as the force of Earth's gravity on an object increases, the object's mass increases
Explanation:
Based on newton's law of gravitation "every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between them".
It is mathematically expressed as:
F = 
F is the gravitational force on either particle
m₁ and m₂ are the masses
r is the distance between particles
G is the universal gravitation constant.
From this expression, we see that the force of earth's gravity is directly proportional to mass.
The term "solution" is more frequently used when a homogeneous mixture<span> is a liquid, although it is sometimes used if the </span>homogeneous mixture<span> is a gas.</span>
Answer:
The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Explanation:
From the given information:
The activation barrier for the hydrolysis of sucrose into glucose and fructose is 108 kJ/mol.
In this same concentration for the glucose and fructose; the reaction rate can be calculated by the rate factor which can be illustrated from the Arrhenius equation;
Rate factor in the absence of catalyst:

Rate factor in the presence of catalyst:

Assuming the catalyzed reaction and the uncatalyzed reaction are taking place at the same temperature :
Then;
the ratio of the rate factors can be expressed as:

![\dfrac{k_2}{k_1}={ \dfrac {e^{[ Ea_1 - Ea_2 ] }}{RT} }}](https://tex.z-dn.net/?f=%5Cdfrac%7Bk_2%7D%7Bk_1%7D%3D%7B%20%20%5Cdfrac%20%7Be%5E%7B%5B%20%20Ea_1%20-%20Ea_2%20%5D%20%7D%7D%7BRT%7D%20%7D%7D)
Thus;

Let say the assumed temperature = 25° C
= (25+ 273)K
= 298 K
Then ;



The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Answer:
Geothermal energy is heat derived within the sub-surface of the earth. Water and/or steam carry the geothermal energy to the Earth's surface. Depending on its characteristics, geothermal energy can be used for heating and cooling purposes or be harnessed to generate clean electricity.
Explanation:
Mark as brainliest