Answer:
KO is the limiting reactant.
0.11 mol O₂ will be produced.
Explanation:
4 KO₂ + 2 H₂O ⇒ 4 KOH + 3 O₂
Find the limiting reagent by dividing the moles of the reactant by the coefficient in the equation.
(0.15 mol KO₂)/4 = 0.0375
(0.10 mol H₂O)/2 = 0.05
KO₂ is the limiting reagent.
The amount of product produced depends on the limiting reagent. To find how much is produced, take moles of limiting reagent and multiply it by the ratio of reagent to product. You can find the ratio by looking at the equation. For every 4 moles of KO₂, 3 moles of O₂ are produced.
0.15 mol KO₂ (3 mol O₂)/(4 mol KO₂) = 0.1125 mol O₂
0.11 mol O are produced.
it never will, it will pop
Answer:
Explanation:
First, let's review the ideal gas law, PV = nRT. In this equation, 'P' is the pressure in atmospheres, 'V' is the volume in liters, 'n' is the number of particles in moles, 'T' is the temperature in Kelvin and 'R' is the ideal gas constant (0.0821 liter atmospheres per moles Kelvin)
The periodic table<span> organizes the chemical elements according to the number of protons that each has in its atomic nucleus.</span>
Answer:

Explanation:
Hello!
In this case, given the change in volume and pressure of the gas, it is possible for us to recall the Boyle's law as way to understand the inversely proportional relationship between pressure and volume:

Thus, when solving for the final pressure, P2, given the initial pressure and volume and the final volume, we obtain:

Best regards!