Answer:
i). Inverted
ii). Magnification of the image = -0.5
iii). Real
Explanation:
As shown in the ray diagram attached,
An object AB has been placed in front of converging lens (convex lens) at u = 30 cm.
F (Focus) of the lens is at 10 cm. So F = 10 cm
By analyzing the ray diagram we can measure the distance of the image on the other side of the lens (By counting the small blocks of the graph)
V = 15 cm
Characteristics of the image is:
i) Inverted
ii) Magnification of the image = 
= -0.5
ii) Real
Answer:
One when it enters the glass slab from air and second time when it enters the air through glass slab. When light rays travelling through air enters glass slab, they get refracted and bend towards the normal. Now the direction of refracted ray changes again when it comes out of the glass slab into air.
Answer: Before the jump, the snowboarder would carry potential energy.
During the jump he will carry kinetic energy.
And after the jump, assuming hes at a full stop, he will carry potential energy once again.
To find work, you use the equation: W = Force X Distance X Cos (0 degrees)
Following the Law of Conservation of Energy, energy cannot be destroyed nor created.
So you would do 75 N x 10m x Cos (0 degrees)= 750 J
Answer:
My answer is 7.2 km
Explanation:
When Stephen goes to the south and then to the east, he is drawing a right triangle, where the 4 km and 6 km sides are the cathetus of a right triangle.
Then we use the Pithagorean theorem to solve this problem. We need to find the hypotenuse.
c² = a² + b²
c² = 4² + 6²
c² = 16 + 36
c² = 52
c = 7.2 km