Explanation:
Electromagnetic waves are the waves which are created as the result of the electrical waves which are perpendicular to each other and also perpendicular to the direction of propagation.
Electromagnetic spectrum is range of the frequencies and their respective wavelengths of the various type of the electromagnetic radiation.
In order of the increasing frequency and the photon energy and the decreasing wavelength the spectrum are:
radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.
The energy of the radio waves photons is the lowest of all the other waves in the electromagnetic spectrum.
Also, 
Where,
h is Plank's constant having value 
Thus, energy is directly proportional to the frequency. The radio waves have the lowest frequency.
Answer:
310 meters
Explanation:
Given:
v₀ = 0 m/s
t = 8.0 s
a = -9.8 m/s²
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (8.0 s) + ½ (-9.8 m/s²) (8.0 s)²
Δy = -313.6
Rounded to two significant figures, the object fell 310 meters.
<span>The 23.5 degree tilt is responsible for the seasons. If the earth had no tilt there would not be seasons. If the earth was tilted by 90 degrees the seasonal changes would be at the most extreme. The Earth's pole would point directly at the sun at a point on the track around the sun. As the Earth revolves around the Sun the pole would alternate twice each year between pointing directly at the sun and being perpendicular to the sun.
I hope this helps you!
xo, Leafling</span>
Answer:
Please see below as the answer is self-explanatory.
Explanation:
- We can take the initial velocity vector, which magnitude is a given (67 m/s) and project it along two directions perpendicular each other, which we choose horizontal (coincident with x-axis, positive to the right), and vertical (coincident with y-axis, positive upward).
- Both movements are independent each other, due to they are perpendicular.
- In the horizontal direction, assuming no other forces acting, once launched, the supply must keep the speed constant.
- Applying the definition of cosine of an angle, we can find the horizontal component of the initial velocity vector, as follows:

- Applying the definition of average velocity, since we know the horizontal distance to the target, we can find the time needed to travel this distance, as follows:

- In the vertical direction, once launched, the only influence on the supply is due to gravity, that accelerates it with a downward acceleration that we call g, which magnitude is 9.8 m/s2.
- Since g is constant (close to the Earth's surface), we can use the following kinematic equation in order to find the vertical displacement at the same time t that we found above, as follows:

- In this case, v₀y, is just the vertical component of the initial velocity, that we can find applying the definition of the sine of an angle, as follows:

- Replacing in (3) the values of t, g, and v₀y, we can find the vertical displacement at the time t, as follows:

- Since when the payload have traveled itself 400 m, it will be at a height of 53.5 m (higher than the target) we can conclude that the payload will be delivered safely to the drop site.