The final temperature of the seawater-deck system is 990°C.
<h3>What is heat?</h3>
The increment in temperature adds up the thermal energy into the object. This energy is Heat energy.
The deck of a small ship reaches a temperature Ti= 48.17°C seawater on the deck to cool it down. During the cooling, heat Q =3,710,000 J are transferred to the seawater from the deck. Specific heat of seawater= 3,930 J/kg°C.
Suppose for 1 kg of sea water, the heat transferred from the system is given by
3,710,000 = 1 x 3,930 x (T - 48.17)
T = 990°C to the nearest tenth.
The final temperature of the seawater-deck system is 990°C.
Learn more about heat.
brainly.com/question/13860901
#SPJ1
Yes, an object<span> that was set in motion in the past by some force, but that is no longer being acted on by a net force, is </span>moving<span> but with </span>zero acceleration<span>, i.e. it is </span>moving<span> at constant velocity.</span>
Answer: 25 Ohms
Explanation:
From this question, the following parameters are given:
Voltage V = 1.5 v
Current I = 0.03A
From Ohm's law;
V = IR
Where R = resultant resistance of the two resistors.
Substitute V and I into the formula and make resultant R the subject of formula.
1.5 = 0.03 × R
R = 1.5/0.03
R = 50 Ohms
From the question, it is given that Thr two equal resistors are connected in series.
R = R1 + R2
But R1 = R2
50 = 2R1
R1 = 50/2
R1 = 25
R1 = R2 = 25 Ohms
Therefore, the resistors must each have a value of 25 Ohms
Answer:
Option 5.
Explanation:
Many of the properties of water like high specific heat, cohesion, high vaporization heat, etc can be contributed to the polar nature of water molecule.
Water being a polar molecule as it contains positively charged hydrogen and an electro-negative oxygen which results in uneven or non uniformity in sharing of electrons which leads to dipole formation and hence polarization of the molecule due to which it attracts its neighboring molecules.
This polar nature imparts the properties like cohesion, surface tension , adhesion, etc due to the presence of hydrogen bonds in water molecule.
Answer:
0.0667 m
Explanation:
λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m
D = screen distance = 2.5 m
d = slit width = 15 x 10⁻⁶ m
n = order = 1
θ = angle = ?
Using the equation
d Sinθ = n λ
(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)
Sinθ = 26.67 x 10⁻³
y = position of first minimum
Using the equation for small angles
tanθ = Sinθ = y/D
26.67 x 10⁻³ = y/2.5
y = 0.0667 m