Answer:
<em>P = 66.67 W</em>
Explanation:
<u>Joule Heating</u>
It's the process by which the electric current passing through a conductor produces heat.
Also known as Joule's first law or the Joule–Lenz law, states that the power of heating generated by an electrical conductor (P) is proportional to the product of its resistance (R) and the square of the current (I).
It can be described by the equation that follows:

Also, we can calculate the voltage V with the formula of Ohm's law:

Combining both equations, power can be related to the voltage:

Given the power and the voltage, the resistance can be calculated by solving for R:

There are two bulbs marked P=200W V=250V and P=100 W V=250.
The first bulb has a resistance of:


The first bulb has a resistance of:


When connected in series, the total resistance is


The total power consumed when connecting them to a V=250 V supply is:

P = 66.67 W
Answer:A7.50kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of2.30s. Find the force constant of the spring.
N/m
Explanation:
Answer:
All magnets have two poles: the North Pole and the South Pole.
Magnets attract ferromagnetic materials such as iron, nickel, and cobalt.
The magnetic force of a magnet is stronger at its poles than in the middle.
A freely suspended magnet always points in North-South direction.
Hope this helps
Answer:
The new kinetic energy would be 16 times greater than before.
Explanation:
Kinetic energy is found using this formula:
- KE = 1/2mv²
- where KE = kinetic energy (J), m = mass (kg), and v = velocity (m/s)
We can see that kinetic energy is directly proportional to the square of the velocity, meaning that if the speed was increased by 4 times, then the kinetic energy would get increased by a factor of 16.
The velocity just before the ball hits the ground can be found by the equation:
Let's substitute h = 10 m and h = 40 m into this formula.
We can see that the velocity increases by a factor of 4 (10 m → 40 m).
Therefore, this means that the kinetic energy would also be increased by a factor of (4)² = 16. Thus, the answer is D) The new kinetic energy would be 16 times greater than before.
The correct formula to use is: F = G [M1*M2] /r^2
Where,
G = the force of gravity
M1 = the mass of the first object [the mass of the astronaut]
M2 = the mass of the second object [the mass of the planet]
r = the distance between the two objects in metre
F = 6.67 * 10^-11 [66.5 * 8.43 * 10^23] / [4.40 * 10^6]^2
F = 193N.<span />