Before a person walks through burning coal, the person will make sure their feet are very wet. When they start walking on the coal, this moisture will evaporate and form a protective gas layer underneath the person's feet. You can see examples of this if you happen to drip some water on a hot stove or any very hot surface. The water will very easily glide around on top of a newly formed layer of air underneath it -- like air hockey pucks on an air hockey table. Note that when someone walks through burning coal, typically this is also done very quickly to prevent a great deal of exposure to possible harm. By walking quickly, thinking positively, and letting the water cushion you from immediate danger over a short distance, such a task is possible. You may have also heard of physics teachers demonstrating how this principle works by sticking their hand first in a bucket of water and then quickly in a bucket of boiling molten lead. In the lead, their hand is protected briefly by a layer of gas from the evaporated water (the water vapor). I'm fairly sure that there is a name for this particular layer of gas, but I'm afraid the name is beyond me at the moment. In other words, water vapor has a low heat capacity and poor thermal conduction. Very often, the coals or wood embers that are used in fire walking also have a low heat capacity. Sweat produced on the bottom of people's feet also helps form a protective water vapor. All of this together makes it possible, if moving quickly enough, to walk across hot coals without getting burned. WARNING: Do not attempt to perform any of the actions described above. You can seriously injure yourself. Answered by: Ted Pavlic, Electrical Engineering Undergrad Student, Ohio St. (citing my source)
Answer:
<em>The equivalent resistance of the combination is R/100</em>
Explanation:
<u>Electric Resistance</u>
The electric resistance of a wire is directly proportional to its length. If a wire of resistance R is cut into 10 equal parts, then each part has a resistance of R/10.
Parallel connection of resistances: If R1, R2, R3,...., Rn are connected in parallel, the equivalent resistance is calculated as follows:

If we have 10 wires of resistance R/10 each and connect them in parallel, the equivalent resistance is:

This sum is repeated 10 times. Operating each term:

All the terms have the same denominator, thus:

Taking the reciprocals:

The equivalent resistance of the combination is R/100
Answer:

Explanation:
We know that the gravity on the surface of the moon is,
<u>Gravity at a height h above the surface of the moon will be given as:</u>
..........................(1)
where:
G = universal gravitational constant
m = mass of the moon
r = radius of moon
We have:
is the distance between the surface of the earth and the moon.
Now put the respective values in eq. (1)

is the gravity on the moon the earth-surface.
Bio-gas is the naturally produced fossil fuel, a by-product when bacteria decompose organic material under anaerobic conditions.
<h3><u>Explanation:</u></h3>
Organic matter particularly waste material is broken down by bacteria through fermentation in an environmental condition without any presence of oxygen. This process of decomposition leads to formation of bio-gas with "carbon dioxide and methane" in a 2:3 ratio.
The above biological process is termed as bio-digestion or anaerobic digestion. Methane is flammable and thus bio-gas can be used as "energy source", a waste-to-energy transformation. The remaining decomposed matter is ideal as manure for plants due to its rich nutrient level.
Answer:
t = 13.7 s or t = 14 s with proper significant figures
Explanation:
The initial speed is 0 m/s since the car starts from rest, acceleration is 5.5 m/s2 and distance is 523 m.
Since we have initial speed, acceleration and distance we can use the following formula to find the time. We can now use algebra to work out our answer.
d = vt +
at²
523 = (0)t + (
)(5.5)t²
523 = 2.8t²
186.8 = t²
13.7 s = t
(t = 14 s with proper significant figures)