The best description for the relationship between the products and the reactants in an exothermic reaction is C. The potential energy of the products is less than the potential energy of the reactants.
Answer:
Explanation:
In a saturated solution, more solute cannot be dissolved at a given temperature.
This is because, the solute dissolves in a solvent because of space between particles of solvent but on continuous addition of solute, the space between the solvent particles gets fulfilled. Thus no more solute particle can dissolve in a solvent.
Answer:
For each system listed in first column of the table below, decide (if possible) whether the change described in the second column will increase the entropy S of the system, decrease S , or leave S unchanged. If you don?t have enough information to decide, check the not enough information button in the last column
excitatory amino acids are the amino acids helps in transformation of neurotransmitters or it helps in transmission of synapsis rapidly in brain of mammal. EAA known to be neurotransmitters for Central nervous system.
Excitatory amino acids count may vary from 50’s to 100’s. They are mostly composed of non-protein- amino acids obtained from algae or fungi.
The possible EAAs are Glutamate (Glu) and Aspartate which act as excitatory neurotransmitters in the brain. They get released from neurons where they induce excitation via metabotropic Glu receptors.
Both glutamate and aspartate having excitatory effect on neurotransmission whereas Gama-amino butyric acid having inhibitory effect on neurotransmission.
Thus, the statement ‘neurotransmitters are chemical brother of gaba’ is indicating the complementary effect of each other.
Answer:
B. 1.65 L
Explanation:
Step 1: Write the balanced equation
2 SO₂(g) + O₂(g) ⇒ 2 SO₃(g)
Step 2: Calculate the moles of SO₂
The pressure of the gas is 1.20 atm and the temperature 25 °C (298 K). We can calculate the moles using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.20 atm × 1.50 L / (0.0821 atm.L/mol.K) × 298 K = 0.0736 mol
Step 3: Calculate the moles of SO₃ produced
0.0736 mol SO₂ × 2 mol SO₃/2 mol SO₂ = 0.0736 mol SO₃
Step 4: Calculate the volume occupied by 0.0736 moles of SO₃ at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
0.0736 mol × 22.4 L/1 mol = 1.65 L