Answer:
4-oxopentanoic acid.
Explanation:
In this case, we must remember that the Grignard reaction is a reaction in which <u>carbanions</u> are produced. Carboanions have the ability to react with CO2 to generate a new C-C bond and a carboxylate ion. Finally, the acid medium will protonate the carboxylate to produce the <u>carboxylic acid group.
</u>
The molecules that can follow the mechanism described above are the molecules: p-methylbenzoic acid, cyclopentane carboxylic acid and 3-methylbutanoic acid. (See figure 1)
In the case of <u>4-oxopentanoic acid</u>, the possible carbanion <u>will attack the carbonyl group</u> to generate a cyclic structure and an alcohol group (1-methylcyclopropan-1-ol). Therefore, this molecule cannot be produced by this reaction. (See figure 2)
PH + poH = 14
6.2 +poH = 14
poH = 7.8
A hydrate is a substance where in it contains water and other constituent elements. To know whether if that compound was a hydrate,you should record its mass, then put it in a test tube and heat it with a Bunsen burner. If the compound is a hydrate, the water in the compound will discharge in the form of water vapor. At the next 5-10 minutes, remove it in the test tube and weigh it up again. If the mass is now fewer, that means that there was water existing that has now evaporated, and the compound was a hydrate.
D. The energy released or absorbed during the reaction