Answer:
An object which experiences either a change in the magnitude or the direction of the velocity vector can be said to be accelerating. This explains why an object moving in a circle at constant speed can be said to accelerate - the direction of the velocity changes.
if a car turns a corner at constant speed, it is accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.
Explanation:
Answer:
1.2 rad/s
Explanation:
m1 = 15 g, m2 = 9 g, ω1 = 0.75 rad/s
Let the new angular speed is ω2 and the radius of the table be r.
The angular momentum is conserved when no external torque is applied.
I1 ω1 = I2 ω2
(m1 + m2)x r^2 x 0.75 = m1 x r^2 x ω2
(15 + 9) x 0.75 = 15 x ω2
ω2 = 1.2 rad/s
Answer:
f = 8 %
Explanation:
given,
density of body of fish = 1080 kg/m³
density of air = 1.2 Kg/m³
density of water = 1000 kg/m²
to protect the fish from sinking volume should increased by the factor f
density of fish + density of water x increase factor = volume changes in water
1080 +f x 1.2 =(1 + f ) x 1000
1080 + f x 1.2 = 1000 + 1000 f
998.8 f = 80
f = 0.0800
f = 8 %
the volume increase factor of fish will be equal to f = 8 %
The primary force would be Thermal Convection, it pushes it and thus makes continents drift.
-Hope that helps, Nexxmexx :3
Answer:
Explanation:
When the rock is immersed in unknown liquid the forces that act on it are shown as under
1) Tension T by the string
2) Weight W of the rock
3) Force of buoyancy due to displaced liquid B
For equilibrium we have
=
When the rock is suspended in air for equilibrium we have
When the rock is suspended in water for equilibrium we have
+ =
Using the given values of tension and solving α,β,γ simultaneously for we get
Solving for density of liquid we get