Answer:
No.
Explanation:
The force that two particle experience is inversely proportional to the sqare of the distance, this is:
for a distance D
If we move them so that D is doubled:
= 
Then the force they experience is one fourth of the original.
Answer:
5.4 ms⁻¹
Explanation:
Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.
= length of the meter stick = 1 m
= mass of the meter stick
= angular speed of the meter stick as it hits the floor
= speed of the other end of the stick
we know that, linear speed and angular speed are related as

= height of center of mass of meter stick above the floor = 
= Moment of inertia of the stick about one end
For a stick, momentof inertia about one end has the formula as

Using conservation of energy
Rotational kinetic energy of the stick = gravitational potential energy

Answer:
The angle is 
Explanation:
From the question we are told that
The distance of the dartboard from the dart is 
The time taken is 
The horizontal component of the speed of the dart is mathematically represented as

where u is the the velocity at dart is lunched
so

substituting values

=> 
From projectile kinematics the time taken by the dart can be mathematically represented as

=> 


=> 
![\theta = tan^{-1} [0.277]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%20tan%5E%7B-1%7D%20%5B0.277%5D)

Answer:
KE₂ = 6000 J
Explanation:
Given that
Potential energy at top U₁= 7000 J
Potential energy at bottom U₂= 1000 J
The kinetic energy at top ,KE₁= 0 J
Lets take kinetic energy at bottom level = KE₂
Now from energy conservation
U₁+ KE₁= U₂+ KE₂
Now by putting the values
U₁+ KE₁= U₂+ KE₂
7000+ 0 = 1000+ KE₂
KE₂ = 7000 - 1000 J
KE₂ = 6000 J
Therefore the kinetic energy at bottom is 6000 J.
D.) White Dwarf
It is the smallest star whose mass is approximately equal or greater than 1.4M
Here, M = mass of the Sun.
Hope this helps!