<u>Answer:</u>
The correct answer option is D. The distance between the planet and the Sun changes as the planet orbits the sun.
<u>Explanation:</u>
Kepler’s laws of planetary motion, derived by the German astronomer Johannes Kepler, are the laws of physics that describe the motions of the planets in the solar system.
According to the Kepler's first law of planetary motion: the path on which the planets orbit around the sun is elliptical in shape, with the center of the sun at one focus.
Therefore, the distance between the Sun and the planets vary as the planet orbit around the sun.
Answer:
-100N
Explanation:
Newton's third law of motion states that to every force exerted on one body, there is an equal and opposite force. This means that if object A exerts an ACTION force on B, there is a force called REACTION FORCE, which is equal and opposite, exerted on A by B.
The action and reaction forces are equal in size/magnitude but opposite in direction. In this case where a tennis racket strikes a tennis ball with a force (action force) of 100N, the ball will strike the racket with a reaction force of -100N.
F(RB) = -F(BR)
Answer:
27.1 m/s
Explanation:
Given that at a race car driving event, a staff member notices that the skid marks left by the race car are 9.06 m long. The very experienced staff member knows that the deceleration of a car when skidding is -40.52 m/s2.
Using third equation of motion,
V^2 = U^2 + 2aS
Since the car is decelerating, the final velocity V = 0
Substitute all the parameter into the equation above,
0 = U^2 - 2 * 40.52 * 9.06
U^2 = 734.22
U = 
U = 27.096
U = 27.1 m/s approximately
Therefore, the staff member can estimate for the original speed of the race car to be 27.1 m/s if it came to a stop during the skid
The position compared to that of home is a reference to displacement, I believe.
Displacement = x total - x initial
So I believe the answer is 5 blocks due north (if you’re walking linearly from your home), unless the questions is referring to relative displacement, in which then you’d need to use the Pythagorean theorem to find the hypotenuse between both positions. And then you’d have to find theta for the degrees between the south direction and the other unmentioned direction. But I don’t think that’s the case.
Distance refers to x total and doesn’t care for direction, as this refers to a scalar quantity opposed to a vector. Thus the equation is just
d = x
So 8 blocks + 3 blocks = a distance of eleven blocks walked total