First, use a high-quality measurement tool. Next, measure carefully. Finally, repeat the measurement a few times. Hope it helps!
Answer:
in the downward movement of the movement when the constant is lost
Explanation:
When the coin is on the piston it has a relationship given by
a = d²x / dt²
the piston position is
x = A cos wt
a = - A w² cos wt
the maximum acceleration is
a = - A w²
When the piston raises the acceleration of gravity and that of the piston go in the same direction, when the piston descends they relate it is contrary to gravity, therefore when the frequency increases, the point where the acceleration of the piston is greater than gravity arrives and the coin loses contact.
The point where you lose contact is
a = g
g = A w²
In short, in the downward movement of the movement when the constant is lost
is the equation that represents the Joule's law of heating.
<h3>
Explanation:</h3>
Joule's law of heating defines the heat generated by any current flowing conductor is directly proportional to
1. Square of Current (I²),
2. Resistance of the conductor (R)
3. Time for which current is passed (t)
Hence, Heat generated =
.....................(1)
By Ohm's Law, the potential difference (V) across a conductor is directly proportional to the current(I) flowing through it. The constant of proportionality is termed as resistance of the conductor (R).
...............................................(2)
From (2), Current (I) can be rewritten as
........................................................(3)
Substituting (3) in (1), we get
