Answer:
The last one is false
Explanation:
Energy can be neither created or destroyed. It can only move from one type of energy to another.
Answer:
- 670 kg.m/s
Explanation:
Newton's third law states that to every action, there is equal and opposite reaction force. Since the force will be same but different in direction and acted in the same time then the impulses ( force multiply by time) of the two car be same in magnitude but different in direction - 670 kg.m/s
Answer:
Volcanic eruptions cool down the planet
Explanation:
Volcanic eruptions actually cool the planet because the particles ejected from volcanoes shade incoming solar radiation. ... The small ash and aerosol particles decrease the amount of sunlight reaching the surface of the Earth and lower average global temperatures.
Hope this helps!!! :D
Answer:
a) t = 20 [s]
b) Can't land
Explanation:
To solve this problem we must use kinematics equations, it is of great importance to note that when the plane lands it slows down until it reaches rest, ie the final speed will be zero.
a)
where:
Vf = final velocity = 0
Vi = initial velocity = 100 [m/s]
a = desacceleration = 5 [m/s^2]
t = time [s]
Note: the negative sign of the equation means that the aircraft slows down as it stops.
0 = 100 - 5*t
5*t = 100
t = 20 [s]
b)
Now we can find the distance using the following kinematics equation.
x - xo = distance [m]
x -xo = (0*20) + (0.5*5*20^2)
x - xo = 1000 [m]
1000 [m] = 1 [km]
And the runaway is 0.8 [km], therefore the jetplane needs 1 [km] to land. So the jetpalne can't land
To solve this problem we will use the linear motion kinematic equations, for which the change of speed squared with the acceleration and the change of position. The acceleration in this case will be the same given by gravity, so our values would be given as,
Through the aforementioned formula we will have to
The particulate part of the rest, so the final speed would be
Now from Newton's second law we know that
Here,
m = mass
a = acceleration, which can also be written as a function of velocity and time, then
Replacing we have that,
Therefore the force that the water exert on the man is 1386.62