Answer:
a. 652.68N
b. -2349.65J
c. -3116.12J
d. 5465.77J
e. Zero
Explanation:
a. According to equilibrium of forces, the force of gravity is equal to the sum of the frictional force and force exerted by the man in the opposite direction (since they're both resistant forces).
Fg = Fm + Fr
Fm = Fg - Fr
Fm = mgsin(28°) - umgcos(28°)
u = coefficient of frictional force.
Fm = 330*9.8*sin28 - 0.4*330*9.8*cos28
Fm = 1518.27 - 865.59
Fm = 652.68N
b. Work done by man is:
Wm = -Fm * d
Wm = -652.68 * 3.6
Wm = -2349.65J
c. Work done by friction force:
W(Fr) = -Fr * d
W(Fr) = -865.59 * 3.6
W(Fr) = -3116.12J
d. Work done by gravity:
Wg = Fg * d
Wg = 1518.27 * 3. 6
Wg = 5465.77J
e. Net work done on the piano is:
Work done by friction + work done by gravity + work done by man
= -3116.12 + 5464.77 + (-2349.65)
= 0J
Answer:
e. TA>T>Tc
Explanation:
a) In this case, we cannot say for sure QA>QB>QC. This is because the magnitude of the heat flow will depend on the specific heat and the mass of each sample. Due to the equation:

if we did an energy balance of the system, we would get that>
QA+QB+QC=0
For this equation to be true, at least one of the heats must be negative. And one of the heats must be positive.
We don't know either of them, so we cannot determine if this statement is true.
b) We can say for sure that QA<0, because when the two samples get to equilibrum, the temperatrue of A must be smaller than its original temperature. Therefore, it must have lost heat. But we cannot say for sure if QB<0 because sample B could have gained or lost heat during the process, this will depend on the equilibrium temperature, which we don't know. So we cannot say for sure this option is correct.
c) In this case we don't know for sure if the equilibrium temperature will be greater or smaller than TB. This will depend on the mass and specific heat of the samples, just line in part a.
d) is not complete
e) We know for sure that A must have lost heat, so its equilibrium temperature must be smaller than it's original temperature. We know that C must have gained heat, therefore it's equilibrium temperature must be greater than it's original temperature, so TA>T>Tc must be true.
Im pretty sure the answer is mutations in the DNA of genes because i believe the other 3 are correct
Answer:
60-100
Explanation:
A normal resting heart rate for adults ranges from 60 to 100 beats per minute. Generally, a lower heart rate at rest implies more efficient heart function and better cardiovascular fitness.
HOPE THIS HELPS!!! HAVE A GREAT DAY!!!