Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
Answer:
helium-4 (90%) or tritium (7%).
Explanation:
hope it helped u buddy
Answer:
Yes, Mirror are a surface that reflects light more perfectly than ordinary objects.
Explanation:
Well, if a charger conductor is touched to another object or close enough to touching the object then the conductor can transfer its charge to that object. Conductors allow for electrons to be transported from particle to particle, so a charged object will always distribute its charge until the repulsive forces are minimized.