Answer:
The final pressure of the whole system is 34.80 atm.
Explanation:
Given that,
Volume = 45.0 ml
Volume of first bulb = 77.0 mL
Pressure = 8.89 atm
Volume of second bulb = 250 mL
Pressure = 2.82 atm
Volume of third bulb = 21.0 mL
Pressure = 8.42 atm
We need to calculate the final pressure of the whole system
Using formula of pressure

Where,
= pressure of first bulb
= pressure of second bulb
= pressure of third bulb
= initial pressure of tube
= Volume of first bulb
=Volume of second bulb
= Volume of third bulb
= Initial volume of tube
Put the value into the formula



Hence, The final pressure of the whole system is 34.80 atm.
Well most of the earth's oxygen resides in mineral oxides of the crust. a small fraction resides in the atmosphere and an even smaller fraction resides in the biosphere. still the biosphere is crucial to understanding the atmospheric oxygen budget as it controls short term exchanges between sediments and the atmosphere.
Well, let's take it the other way. If you have a rather low voltage (220 volts -- Europe -- is low) you'd get a high current, which more easily dissipates as heat, resulting in loss of energy. Using a high voltage you have a low current which could easily be transported with almost no loss.
Answer:
44.3 m/s
Explanation:
Given that a ball is thrown horizontally from the top of a building 100m high. The ball strikes the ground at a point 120 m horizontally away from and below the point of release.
What is the magnitude of its velocity just before it strikes the ground ?
The parameters given are:
Height H = 100m
Since the ball is thrown from a top of a building, initial velocity U = 0
Let g = 9.8m/s^2
Using third equation of motion
V^2 = U^2 + 2gH
Substitute all the parameters into the formula
V^2 = 2 × 9.8 × 100
V^2 = 200 × 9.8
V^2 = 1960
V = 44.27 m/s
Therefore, the magnitude of its velocity just before it strikes the ground is 44.3 m/s approximately