Answer:
5595 m
Explanation:
The wave travels down (the depth) and the back up (the depth again)
this distance is 2 d
2 d = 1492 m/s * 7.5 s
2d = 11190 m
d = 5595 m
Based on the mass of the bob and the angle between the cord and the vertical, the pendulum length is 0.50m.
The maximum kinetic energy can be found to be 9.42 x 10⁻⁴J.
<h3>What is the pendulum length?</h3>
This can be found as:
= g-force / w²
Solving gives:
= 9.8 / 4.43²
= 0.4998 m
= 0.50 m
<h3>What is the maximum kinetic energy?</h3>
This can be found as:
= 0.5 × m × w² × A²
Maximum kinetic energy is:
= 0.5 × 60 × 10⁻³ × (4.43 × 0.4998 x 0.08 rad)²
= 9.42 x 10⁻⁴J
Find out more on maximum kinetic energy at brainly.com/question/24690095.
Answer:
The battery is an electric energy source, which is being used to power a motor. The motor turns this electricity into kinetic energy as it spins the fan, creates heat from friction, and creates noise as stated by the problem.
Explanation:
1). Calculate how long it takes an object to fall 4,000 m after it's dropped. (Use D = (1/2) (g) (T²) . D is 4,000 m. g = 9.8 m/s². Find T .)
2). Calculate how far the object will move HORIZONTALLY in that length of time, if it's moving at 75 m/s. (Distance = (75 m/s) x (time) . )
Answer:
Q1 = +2.50 x 10^-5C and Q2 = -2.50 x 10^-5C, r = 0.50m, F=?
Using Coulomb's law:
F = 1/(4πE) x Q1 x Q2/ r^2
Where
k= 1/(4πE) = 9 x 10^9Nm2/C2
Therefore,
F = 9x 10^9 x 2.50 x 10^-5 x2.50 x
10^-5/. ( 0.5)^2
F= 5.625/ 0.25
F= 22.5N approximately
F= 23N.
To find the direction of the force: since Q1 is positive and Q2 is negative, the force along Q1 and Q2 is force of attraction.
Hence To = 23N, attractive. C ans.
Thanks.