Answer:
A. 231.77 J
B. 5330.71 J
C. 46 donuts
Explanation:
A. To lift the barbell once, she will have to extend it the full length of her arm. The work done will then be:
W = F * d
Where the force is the weight of the barbell.
F = m * g
Hence, the work done in lifting the barbell is:
W = m * g * d
W = 43 * 9.8 * 0.55
W = 231.77 J
B. If she does 23 repetitions, the total energy she expend will be equal to the Potential energy when the barbell is lifted multiplied by 23:
E = 23 * m * g * d
E = 23 * 231.77
E = 5330.71 J
C. 1 Joule = 4.184 calories
5330.71 Joules = 5330.71 * 4.184 = 22303.69
If 1 donut contains 490 calories, the number of donuts she will need will be:
N = 22303.69/490 = 45.5 donuts or 46 donuts
Answer: During medieval times, men, especially outlaws, would keep warm in the winter by wearing a linen shirt with underclothes, mittens made of wool or leather and woolen coats with a hood over a tight cap called a coif.
Explanation:
HOPE THAT HELPED A LITTLE
Answer:
, 
Explanation:
The magnitude of the electromagnetic force between the electron and the proton in the nucleus is equal to the centripetal force:

where
k is the Coulomb constant
e is the magnitude of the charge of the electron
e is the magnitude of the charge of the proton in the nucleus
r is the distance between the electron and the nucleus
v is the speed of the electron
is the mass of the electron
Solving for v, we find

Inside an atom of hydrogen, the distance between the electron and the nucleus is approximately

while the electron mass is

and the charge is

Substituting into the formula, we find

Out of the given options, ‘it is described as a fundamental force and therefore does not depend on other forces’ is the true statement about gravity.
Answer: Option B
<u>Explanation:
</u>
As we all know that there are four fundamental forces existing in the universe- Electromagnetic force, strong forces, weak forces and the gravitational force.
These are the forces that don’t depend on any other physical force to draw a considerable impact on the physical objects. The gravitational force can be defined as,

Where,
G = Gravitational Constant
= Masses of two substances under consideration
R = distance between the two substances.
Looking upon the formula of gravitational force we can easily estimate that the gravitational force relies on the mass of substances and the relative distance between them. There is no factor than the air friction that hinders the gravitational force and that too in a negligible amount.
Answer:

Explanation:
We can assume this problem as two concentric spherical metals with opposite charges.
We have also to take into account the formulas for the electric field and the capacitance. Hence we have

Where k is the Coulomb's constant. Furthermore, by taking into account the expression for the potential and by integrating
![dV=Edr\\\\V=\int_{R_1}^{R_2}Edr=-\int_{R_1}^{R_2}\frac{kQ}{r^2}dr\\\\V=kQ[\frac{1}{R_2}-\frac{1}{R_1}]](https://tex.z-dn.net/?f=dV%3DEdr%5C%5C%5C%5CV%3D%5Cint_%7BR_1%7D%5E%7BR_2%7DEdr%3D-%5Cint_%7BR_1%7D%5E%7BR_2%7D%5Cfrac%7BkQ%7D%7Br%5E2%7Ddr%5C%5C%5C%5CV%3DkQ%5B%5Cfrac%7B1%7D%7BR_2%7D-%5Cfrac%7B1%7D%7BR_1%7D%5D)
Hence, the capacitance is
![C=\frac{1}{k[\frac{1}{R_2}-\frac{1}{R_1}]}](https://tex.z-dn.net/?f=C%3D%5Cfrac%7B1%7D%7Bk%5B%5Cfrac%7B1%7D%7BR_2%7D-%5Cfrac%7B1%7D%7BR_1%7D%5D%7D)
but R1=a and R2=b

HOPE THIS HELPS!!