The car's speed was zero at the beginning of the 12 seconds,
and 18 m/s at the end of it. Since the acceleration was 'uniform'
during that time, the car's average speed was (1/2)(0 + 18) = 9 m/s.
12 seconds at an average speed of 9 m/s ==> (12 x 9) = 108 meters .
==========================================
That's the way I like to brain it out. If you prefer to use the formula,
the first problem you run into is: You need to remember the formula !
The formula is D = 1/2 a T²
Distance = (1/2 acceleration) x (time in seconds)²
Acceleration = (change in speed) / (time for the change)
= (18 m/s) / (12 sec)
= 1.5 m/s² .
Distance = (1/2 x 1.5 m/s²) x (12 sec)²
= (0.75 m/s²) x (144 sec²) = 108 meters .
Answer: V = 504m/a
F = 4N
Explanation: please find the attached file for the solution
Answer:
b) The downward force of gravity
Explanation:
The gravity force has the biggest influence on the deceleration of the ball because no matter how much force you applied on the ball, it will eventually go down again, according to newton's second law:
right after you throw the ball, only the force exerted by the gravity will affect the ball (neglecting air resistance):
so the object will eventually be going down again.
can't read it, need larger picture
Answer:
This is very hard bit I think 6.3 my, I'm not shure.