Answer : The de-Broglie wavelength of this electron, 
Explanation :
The formula used for kinetic energy is,
..........(1)
According to de-Broglie, the expression for wavelength is,

or,
...........(2)
Now put the equation (2) in equation (1), we get:
...........(3)
where,
= wavelength = ?
h = Planck's constant = 
m = mass of electron = 
K.E = kinetic energy = 
Now put all the given values in the above formula (3), we get:


conversion used : 
Therefore, the de-Broglie wavelength of this electron, 
Answer:
Final speed after 2 seconds = 34.6 m/s
Explanation:
Given:
Initial speed of coin (u) = 15 m/s
Time taken = 2 seconds
Find:
Final speed after 2 seconds
Computation:
Gravitational acceleration of earth = 9.8 m/s²
Using first equation of motion;
v = u + at
or
v = u + gt
where,
v = final velocity
u = initial velocity
g = Gravitational acceleration
t = time taken
v = 15 + 9.8(2)
v = 15 + 19.6
Final speed after 2 seconds = 34.6 m/s
The magnitude of the electric field at this location is 
<u>Explanation:</u>
Given

Electric field at this location determined by the force and charge.
E=F/Q

Answer:
Explanation:
The speed of the astronaut can be found with the help of law of conservation of momentum .
mv = MV , M is mass of astronaut , m is mass of object thrown , v is velocity of object thrown and V is velocity of astronaut.
Putting the values
77.5 x V = .94 x 12
V = .14554 m /s
This will be the uniform velocity of astronaut.
Distance to be covered = 37.3 m
time taken = distance / velocity
= 37.3 / .14554
= 256.28 s
= 4.27 minutes.