1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eimsori [14]
3 years ago
7

Please Help ASAP AP calculus Due in 1 day!!! Marking Brainliest!!!

Mathematics
1 answer:
MaRussiya [10]3 years ago
7 0

Answer:

(D)  \displaystyle \frac{12}{1 + ln8}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Integration

Integration Rule [Fundamental Theorem of Calculus 2]:                                           \displaystyle \frac{d}{dx}[\int\limits^x_a {f(t)} \, dt] = f(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle f(x) = \int\limits^{x^3}_1 {\frac{1}{1 + ln(t)}} \, dt<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                       \displaystyle f'(x) = \frac{d}{dx} \bigg[ \int\limits^{x^3}_1 {\frac{1}{1 + ln(t)}} \, dt \bigg] \cdot \frac{d}{dx}[x^3]
  2. Integration Rule - Fundamental Theorem of Calculus 2:                              \displaystyle f'(x) = \frac{1}{1 + ln(x^3)} \cdot \frac{d}{dx}[x^3]
  3. Basic Power Rule:                                                                                             \displaystyle f'(x) = \frac{1}{1 + ln(x^3)} \cdot 3x^{3 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(x) = \frac{3x^2}{1 + ln(x^3)}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle f'(2) = \frac{3(2)^2}{1 + ln(2^3)}
  2. Exponents:                                                                                                        \displaystyle f'(2) = \frac{3(4)}{1 + ln(8)}
  3. Multiply:                                                                                                             \displaystyle f'(2) = \frac{12}{1 + ln(8)}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
jonathan had 72 pieces of recycling.he sorted them into 9 bins if each bin had the same amount , how many pieces of recycling we
Mkey [24]
8, 72 pieces of recycling sorted into 9 bins  will make 8 in each bin.
8 0
3 years ago
Read 2 more answers
Explain how the segment addition postulate can be modeled using a real-world object
IgorC [24]

To determine the length of AB, one must subtract BC from AC. If the length of AC is 18 and the length of BC is 4, then using this formula yields 18 - 4 = 14, so the length of AB is 14.

This postulate also allows a line segment that has only two known points to be broken into two line segments with the addition of a third point in between the endpoints. This is useful for proofs in geometry and analysis.


6 0
3 years ago
Read 2 more answers
When using the Distance Formula, the solution is the perimeter of a polygon.<br> true or false?
natali 33 [55]

Answer:

false

Step-by-step explanation:

When solving the distance formula it is the distance from one point to another. If you had a rectangle and used the distance formula from each point then you would have a perimeter

5 0
3 years ago
How do you find the degree of a number without an exponent?? (56, x, etc.)
GaryK [48]
This is going to help you understand

ttps://www.mathsisfun.com/algebra/degree-expression.html
5 0
4 years ago
The area of a square piece of cardboard is 81 square inches. What is the length of the cardboard
vredina [299]
9 because the square root of 81 is 9
6 0
3 years ago
Other questions:
  • Solving multi-step equations <br><br> 2(x + 7) – 34 = 4x – 11x + 4(x - 1)
    7·2 answers
  • A delivery truck is transporting boxes of two sizes: large and small. the combined weight of a large box and a small box is 60 p
    7·1 answer
  • Write a wordy problem for b = 2a - 6
    7·1 answer
  • 1.)12.5+(-31.5)=<br>2.)-31.91+(-16.7)=<br>3.)1/6+(-11/12)+2/3=<br>4.)29+(-15.7)+(-31.05)=
    14·1 answer
  • These triangles ARE similar! Which reason proves it?
    7·1 answer
  • 9/16=27/x proportions?
    7·1 answer
  • What is the answer to <br> 5(3p+4r)
    12·2 answers
  • Write an equation in slope-intercept form for the line with slope 3/4 and y-intercept -1.​
    13·1 answer
  • Directions: Please choose ONE (you may answer all if you would like) question. Make sure to EXPLAIN your work. NO EXPLANATION=NO
    10·1 answer
  • The spinner is divided into eight equal sections.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!