Solution :
Given :
Initial temperature of the refrigerant is :

= ( 39.37 + 273 ) K
= 312.3 K
Room which is maintained at constant temperature is :

= (22+273) K
= 295 K
The thermal energy transferred to the room is :
Q = 400 kJ
= 
Therefore, the total entropy generation during the thermal energy process is :
![$\Delta S =\left[\frac{-Q}{T_i}+ \frac{+Q}{T_i}\right]$](https://tex.z-dn.net/?f=%24%5CDelta%20S%20%3D%5Cleft%5B%5Cfrac%7B-Q%7D%7BT_i%7D%2B%20%5Cfrac%7B%2BQ%7D%7BT_i%7D%5Cright%5D%24)
Here, -Q = heat is leaving the system maintained at a temperature of
K.
+Q = heat is entering the system maintained at a temperature of
K.
Therefore, substituting the values :
![$\Delta S =\left[\frac{-400\times 10^3}{312.3}+ \frac{400\times 10^3}{295}\right]$](https://tex.z-dn.net/?f=%24%5CDelta%20S%20%3D%5Cleft%5B%5Cfrac%7B-400%5Ctimes%2010%5E3%7D%7B312.3%7D%2B%20%5Cfrac%7B400%5Ctimes%2010%5E3%7D%7B295%7D%5Cright%5D%24)
= [-1280.8197 + 1355.9322]
= 75.1125 J/K
= 0.0751125 kJ/K
= 0.075 kJ/K
7
nitrogen's atomic no. is 7 which is the amount of protons and the amount of protons is equal to the amount of electrons
I believe the correct answer from the choices listed above is option D. The action that leads to crystal formation in minerals is that atoms or molecules form repeating patterns. Minerals are known to have a crystalline structure in which they exhibit short range and long range patterns.
Answer:
Explanat
ion:
Hello,
In this case, considering the given diameter which is related to a radius of 5.0 mm and the formula for the calculation of the volume of the sphere, its volume in cubic centimeters (5.00 mm = 0.5 cm) is then:

In such a way, the density turns out:

Best regards.