Answer:
Option D. 230 J
Explanation:
We'll begin by calculating the temperature change of the iron. This can be obtained as follow:
Initial temperature (T₁) = 50 °C
Final temperature (T₂) = 75 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 75 – 50
ΔT = 25 °C
Thus, the temperature change of the iron is 25 °C.
Finally, we shall determine the amount of heat energy used. This can be obtained as follow:
Mass (M) = 20 g
Change in temperature (ΔT) = 25 °C
Specific heat capacity (C) = 0.46 J/gºC
Heat (Q) =?
Q = MCΔT
Q = 20 × 0.46 × 25
Q = 230 J
Thus, the amount of heat used was 230 J
I 90% sure that it would be supersaturated
Answer:
because it is type of tht a solid
The balanced chemical reaction is:
2HCl + Ca = CaCl2 + H2
We are given the amount of the reactants to be used for the reaction. These values will be the starting point of our calculations.
100 g HCl ( 1 mol HCl / 36.46 g HCl ) = 2.74 mol HCl
100 g Ca ( 1 mol Ca / 40.08 g ) = 2.08 mol Ca
From the reaction, the mole ratio of the reactants is 2:1 where every 2 moles of hydrochloric acid, 1 mole of calcium is required. Therefore, the limiting reactant for this case is calcium.