This should help :)
Example 1: A 36.0 g sample of water is initially at 10.0 °C.
How much energy is required to turn it into steam at 200.0 °C? (This
example starts with a temperature change, then a phase change followed
by another temperature change.)
Solution:
<span>q = (36.0 g) (90.0 °C) (4.184 J g¯1 °C¯1) = 13,556 J = 13.556 kJ
q = (40.7 kJ/mol) (36.0 g / 18.0 g/mol) = 81.4 kJ
q = (36.0 g) (100.0 °C) (2.02 J g¯1 °C¯1) = 7272 J = 7.272 kJ
q = 102 kJ (rounded to the appropriate number of significant figures)
</span>
The heart is a part of the Circulatory system.
Answer:
The rock cycle
Explanation:
The three types of rocks are related and connected through the rock cycle. Rocks are not formed independently of one another, the process of their formation are interconnected.
Igneous rocks are made from cooling and solidification of magma. These magma are derived from the melting of rocks that have been subjected to high temperature and pressure.
When igneous rocks are formed, they can follow two path ways. They either get transformed to sedimentary rocks or metamorphic rocks.
When igneous rocks are subjected to metamorphic conditions, their mineralogy is altered to form metamorphic rocks.
If igneous rocks gets weathered and broken down by agents of denudation, they end up getting transformed into sedimentary rocks.
Answer: Option (b) is the correct answer.
Explanation:
The given data is as follows.
mass = 0.508 g, Volume = 0.175 L
Temperature = (25 + 273) K = 298 K, P = 1 atm
As per the ideal gas law, PV = nRT.
where, n = no. of moles = 
Hence, putting all the given values into the ideal gas equation as follows.
PV =
1 atm \times 0.175 L =
= 71.02 g
As the molar mass of a chlorine atom is 35.4 g/mol and it exists as a gas. So, molar mass of
is 70.8 g/mol or 71 g/mol (approx).
Thus, we can conclude that the gas is most likely chlorine.
Sugar. It is solid and its atoms have less kinetic energy to overcome the bonding force. So, the bonding force is stronger than water, which is liquid and has more kinetic energy to overcome the bonding force of atoms. So, water has less strong force of attraction. Hence, sugar has stronger forces of attraction.