In an ionic bond :
=》B. one atom accepts electrons from another.
in this bond an atom ( <em><u>metallic</u></em> ) loses its electrons and another atom ( <em><u>non- metallic</u></em> ) accepts the electrons, and since there isn't the equal positive and negative charges in the atoms, they forms <em><u>cations</u></em> ( +ve charge ) and <em><u>anions </u></em>( -ve charge )
and get stacked or <em><u>attracted</u></em> to each other by strong <em><u>electrostatic force</u></em>.
Answer is: the discovery of sub atomic particles like electrons.
J. J. Thomson discovered the electron in 1897.
His "plum pudding" model (1904) suggested: the electrons are embedded in the positive charge.
With this model, he abandoned his earlier hypothesis (the atom was composed of immaterial vortices).
J.J. Thomson placed two oppositely charged electric plates around the cathode ray. He did experiments using different metals as electrode materials and found that the properties of the cathode ray remained constant no matter what cathode material he used.
Tomson concluded that atoms are divisible and that the corpuscles are their building blocks (atoms are made up of smaller particles).
The scratched tin can with the iron will more rapidly corrode the iron than the tin.
<h3>What is corrosion?</h3>
The corrosion can be given as the process of the oxidation of the metal into the more stable metal oxide. The chemical oxidation of the metal is attained with the surrounding available oxygen or the water vapors.
The reactivity of the Iron for the oxidation is more as compared to the tin from the reactivity series. Therefore if both tin and iron are exposed to corrosion, iron will be more rapidly corroded.
Learn more about corrosion, here:
brainly.com/question/489228
#SPJ1
Option C coz it should be ( CNH4)2. Hope i cleared your doubt
3.5 M has 3.5 moles per litre
so we have one litre, so we need 3.5 moles
moles = mass/molarmass
3.5 * 23 = 80.5