1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amm1812
3 years ago
8

Kay is using cone-shaped party hats as popcorn holders. The party hats have a diameter of 10 inches and a height of 9 inches. Ho

w many cubic inches of popcorn will they hold? Use 3.14 for pi. Round your answer to the nearest Cubic inch.

Mathematics
2 answers:
vampirchik [111]3 years ago
6 0
I think that the answer is B.
AfilCa [17]3 years ago
6 0
The answer should be B
You might be interested in
Please help QUICK!! TY LOVES!!
irakobra [83]
Yes what he or she said because they are correct.
3 0
3 years ago
Read 2 more answers
Refer to the following scenario:You want to see if there is a difference between the exercise habits of Science majors and Math
bekas [8.4K]

Answer:

1. H0: P1 = P2

2. Ha: P1 ≠ P2

3. pooled proportion p = 0.542

4. P-value = 0.0171

5. The null hypothesis failed to be rejected.

At a signficance level of 0.01, there is not enough evidence to support the claim that there is significant difference between the exercise habits of Science majors and Math majors .

6. The 99% confidence interval for the difference between proportions is (-0.012, 0.335).

Step-by-step explanation:

We should perform a hypothesis test on the difference of proportions.

As we want to test if there is significant difference, the hypothesis are:

Null hypothesis: there is no significant difference between the proportions (p1-p2 = 0).

Alternative hypothesis: there is significant difference between the proportions (p1-p2 ≠ 0).

The sample 1 (science), of size n1=135 has a proportion of p1=0.607.

p_1=X_1/n_1=82/135=0.607

The sample 2 (math), of size n2=92 has a proportion of p2=0.446.

p_2=X_2/n_2=41/92=0.446

The difference between proportions is (p1-p2)=0.162.

p_d=p_1-p_2=0.607-0.446=0.162

The pooled proportion, needed to calculate the standard error, is:

p=\dfrac{X_1+X_2}{n_1+n_2}=\dfrac{82+41}{135+92}=\dfrac{123}{227}=0.542

The estimated standard error of the difference between means is computed using the formula:

s_{p1-p2}=\sqrt{\dfrac{p(1-p)}{n_1}+\dfrac{p(1-p)}{n_2}}=\sqrt{\dfrac{0.542*0.458}{135}+\dfrac{0.542*0.458}{92}}\\\\\\s_{p1-p2}=\sqrt{0.001839+0.002698}=\sqrt{0.004537}=0.067

Then, we can calculate the z-statistic as:

z=\dfrac{p_d-(\pi_1-\pi_2)}{s_{p1-p2}}=\dfrac{0.162-0}{0.067}=\dfrac{0.162}{0.067}=2.4014

This test is a two-tailed test, so the P-value for this test is calculated as (using a z-table):

\text{P-value}=2\cdot P(z>2.4014)=0.0171

As the P-value (0.0171) is bigger than the significance level (0.01), the effect is not significant.

The null hypothesis failed to be rejected.

At a signficance level of 0.01, there is not enough evidence to support the claim that there is significant difference between the exercise habits of Science majors and Math majors .

We want to calculate the bounds of a 99% confidence interval of the difference between proportions.

For a 99% CI, the critical value for z is z=2.576.

The margin of error is:

MOE=z \cdot s_{p1-p2}=2.576\cdot 0.067=0.1735

Then, the lower and upper bounds of the confidence interval are:

LL=(p_1-p_2)-z\cdot s_{p1-p2} = 0.162-0.1735=-0.012\\\\UL=(p_1-p_2)+z\cdot s_{p1-p2}= 0.162+0.1735=0.335

The 99% confidence interval for the difference between proportions is (-0.012, 0.335).

6 0
3 years ago
Find sin(a)&cos(B), tan(a)&cot(B), and sec(a)&csc(B).​
Reil [10]

Answer:

Part A) sin(\alpha)=\frac{4}{7},\ cos(\beta)=\frac{4}{7}

Part B) tan(\alpha)=\frac{4}{\sqrt{33}},\ tan(\beta)=\frac{4}{\sqrt{33}}

Part C) sec(\alpha)=\frac{7}{\sqrt{33}},\ csc(\beta)=\frac{7}{\sqrt{33}}

Step-by-step explanation:

Part A) Find sin(\alpha)\ and\ cos(\beta)

we know that

If two angles are complementary, then the value of sine of one angle is equal to the cosine of the other angle

In this problem

\alpha+\beta=90^o ---> by complementary angles

so

sin(\alpha)=cos(\beta)

Find the value of sin(\alpha) in the right triangle of the figure

sin(\alpha)=\frac{8}{14} ---> opposite side divided by the hypotenuse

simplify

sin(\alpha)=\frac{4}{7}

therefore

sin(\alpha)=\frac{4}{7}

cos(\beta)=\frac{4}{7}

Part B) Find tan(\alpha)\ and\ cot(\beta)

we know that

If two angles are complementary, then the value of tangent of one angle is equal to the cotangent of the other angle

In this problem

\alpha+\beta=90^o ---> by complementary angles

so

tan(\alpha)=cot(\beta)

<em>Find the value of the length side adjacent to the angle alpha</em>

Applying the Pythagorean Theorem

Let

x ----> length side adjacent to angle alpha

14^2=x^2+8^2\\x^2=14^2-8^2\\x^2=132

x=\sqrt{132}\ units

simplify

x=2\sqrt{33}\ units

Find the value of tan(\alpha) in the right triangle of the figure

tan(\alpha)=\frac{8}{2\sqrt{33}} ---> opposite side divided by the adjacent side angle alpha

simplify

tan(\alpha)=\frac{4}{\sqrt{33}}

therefore

tan(\alpha)=\frac{4}{\sqrt{33}}

tan(\beta)=\frac{4}{\sqrt{33}}

Part C) Find sec(\alpha)\ and\ csc(\beta)

we know that

If two angles are complementary, then the value of secant of one angle is equal to the cosecant of the other angle

In this problem

\alpha+\beta=90^o ---> by complementary angles

so

sec(\alpha)=csc(\beta)

Find the value of sec(\alpha) in the right triangle of the figure

sec(\alpha)=\frac{1}{cos(\alpha)}

Find the value of cos(\alpha)

cos(\alpha)=\frac{2\sqrt{33}}{14} ---> adjacent side divided by the hypotenuse

simplify

cos(\alpha)=\frac{\sqrt{33}}{7}

therefore

sec(\alpha)=\frac{7}{\sqrt{33}}

csc(\beta)=\frac{7}{\sqrt{33}}

6 0
3 years ago
What is proving triangles congruent by ASA and AAS
anastassius [24]
So ASA is angle side angle, and that means that if you prove that the side, and the side adjacent to that side and the angle between those two sides are all congruent to another triangle's sides and angle, the triangles are both congruent.
The AAS is angle angle side, or something, so say you have a triangle and you prove that two of its angles are congruent along with a side to another triangle's, then it's AAS. I understand where the confusion might be. I guess it's just a matter of what you state first in your proof?
6 0
3 years ago
What number has the same value ads 50 tens
LUCKY_DIMON [66]
The answer is 500 50 times, 10 is 500
5 0
4 years ago
Read 2 more answers
Other questions:
  • Find the value in degrees 2x+6. X 96
    13·2 answers
  • Factor. 2y^2 - 7y + 6
    13·1 answer
  • For the expression 6 − y + 3, determine the coefficient for the variable term.
    12·2 answers
  • If the height is 24, solve for x. h=-16x^2+8x+48
    7·1 answer
  • Someone help me please- correct answer will get brainliest :)
    6·2 answers
  • Diameter = 20.00, height = 10.00 what's the volume of cylinder ?
    15·1 answer
  • I'd like an explanation on how to factor and simplify 1 - 2sin²x + sin⁴x and turn that into cos⁴x
    6·1 answer
  • What are the ordered pairs?
    9·1 answer
  • PLZ HELP, WILL GIVE BRAINLIEST!!!
    13·1 answer
  • What is 3 1/2 as a quotient of two integers?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!