Just use the Heisenberg Uncertainty principle:
<span>ΔpΔx = h/2*pi </span>
<span>Δp = the uncertainty in momentum </span>
<span>Δx = the uncertainty in position </span>
<span>h = 6.626e-34 J s (plank's constant) </span>
<span>Hint: </span>
<span>to calculate Δp use the fact that the uncertainty in the momentum is 1% (0.01) so that </span>
<span>Δp = mv*(0.01) </span>
<span>m = mass of electron </span>
<span>v = velocity of electron </span>
<span>Solve for Δx </span>
<span>Δx = h/(2*pi*Δp) </span>
<span>And that is the uncertainty in position. </span>
Spectroscopy because it talks about the study of spectrum of light.
respiratory and lymphatic
<span>The correct answer is A, the ligt-dependent reactions. These reactions are responsible for the production of glucose molecules, by the utilization of carbon dioxide, and water along with the sunlight. Glucose is then broken down during resiration process, for the production of ATP in mitochondria.</span><span />
Answer:
sorry don't know the answer but i really need the points sorry
Explanation: