Longer, this is because the H in HNO2 is bonded with an oxygen, no longer allowing this structure to have a resonance structure.
NO2 on the other hand has one double bond and one single bond, so it has a resonance structure. And resonance structures are actually one structure so there isn't really a single and double bond, it's actually a 1 and 1/2 bond that calls for a higher bond order.
And I higher bond order will result in a shorter lengths!
I hope this helps out!!! And just out of curiosity, is this off of an AP FRQ packet??
Answer:
Potassium sulfate
Explanation:
I searched it up on the internet
Can I please have a brainliest
Answer:
They gave you the equation; Cp=,
just plug everything in! You’ve seen this; I have long ago, but we had different units. Sorry, but it’s right there! Go get it!
Explanation:
Answer:
Empirical CHO
molecular C4H4O4
Explanation:
From the question, we know that it contains 41.39% C , 3.47% H and the rest oxygen. To get the % composition of the oxygen, we simply add the carbon and hydrogen together and subtract from 100%.
This means : O = 100 - 41.39 - 3.47 = 55.14%
Next is to divide the percentage compositions by their atomic masses.
C = 41.39/12 = 3.45
O = 55.14/16 = 3.45
H = 3.47/1 = 3.47
Now we divide by the smallest value which is 3.45. We can deduce that this will definitely give us an answer of 1 all through as the values are very similar.
Hence the empirical formula of Maleic acid is CHO
Now we go on to deduce the molecular formula.
To do this we need the molar mass. I.e the amount in grammes per one mole of the compound.
Now we can see that 0.378mole = 43.8g
Then 1 mole = xg
x = (43.8*1)/0.378 = 115.87 = apprx 116
[CHO]n = 116
(12 + 1 + 16]n = 116
29n = 116
n = 116/29 = 4
The molecular formula is thus C4H4O4