Answer: the frequency is every 27.322 days
<h2>
Answer</h2>
The physical state of the elements depends upon the <u>attraction forces </u>and their <u>kinetic energy</u>.
<h2>
Explanation</h2>
The elements or substances are fixed with each other with the help of different chemical forces including ionic bonding, covalent bonding, H- bonding etc. The strength of these forces is also one of the factors that affect their physical natures. For example, covalent or ionic bonds are the strongest bonds than all other bonds and metals that contain these forces are mostly in solid form. The kinetic motion of electrons in the element also affects the physical state of the element and potential of bonding.
Answer:
Germanium
Explanation:
Germanium is a chemical element that is grayish white metalliod
A tuning fork's job is to establish a single note that everybody can tune to.
Most tuning forks are made to vibrate at 440 Hz, a tone known to musicians as "concert A." To tune a piano, you would start by playing the piano's "A" key while ringing an "A" tuning fork. If the piano is out of tune, you'll hear a distinct warble between the note you're playing and the note played by the tuning fork; the further apart the warbles, the more out-of-tune the piano. By either tightening or loosening the piano's strings, you reduce the warble until it's in line with the tuning fork. Once the "A" key is in tune, you would then adjust all of the instrument's 87 other keys to match. The method is much the same for most other instruments. Whether you're tuning a clarinet or guitar, simply play a concert A and adjust your instrument accordingly
Explanation:
It can be a bit tricky to hold a tuning fork while manipulating an instrument, which is why some musicians decide to clench the base of a ringing tuning fork in their teeth. This has the unique effect of transmitting sound through your bones, allowing your brain to "hear" the tone through your jaw. According to some urban legends, touching your teeth with a vibrating tuning fork is enough to make them explode. It's a myth, obviously, but if you have a cavity or a chipped tooth, you'll quickly find this method to be unbelievably painful.
Luckily, you can also buy tuning forks that come mounted on top of a resonator, a hollow wooden box designed to amplify a tuning fork's vibrations. In 1860, a pair of German inventors even devised a battery-powered tuning fork that musicians didn't need to ring again and again
Answer:
about 19.6° and 73.2°
Explanation:
The equation for ballistic motion in Cartesian coordinates for some launch angle α can be written ...
y = -4.9(x/s·sec(α))² +x·tan(α)
where s is the launch speed in meters per second.
We want y=2.44 for x=50, so this resolves to a quadratic equation in tan(α):
-13.6111·tan(α)² +50·tan(α) -16.0511 = 0
This has solutions ...
tan(α) = 0.355408 or 3.31806
The corresponding angles are ...
α = 19.5656° or 73.2282°
The elevation angle must lie between 19.6° and 73.2° for the ball to score a goal.
_____
I find it convenient to use a graphing calculator to find solutions for problems of this sort. In the attachment, we have used x as the angle in degrees, and written the function so that x-intercepts are the solutions.