<h3><u>Given </u><u>:</u><u>-</u><u> </u></h3>
- A certain circuit is composed of two series resistors
- The total resistance is 10 ohms
- One of the resistor is 4 ohms
<h3>
<u>To </u><u>Find </u><u>:</u><u>-</u></h3>
- We have to find the value of other resistor?
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
We know that,
In series combination,
- When a number of resistances are connected in series, the equivalent I.e resultant resistance is equal to the sum of the individual resistances and is greater than any individual resistance
<u>That </u><u>is</u><u>, </u>
Rn in series = R1 + R2 + R3.....So on
<u>Therefore</u><u>, </u>
<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
We have,
R1 + R2 = 10 Ω
4 + R2 = 10Ω
R2 = 10 - 4
R2 = 6Ω
Hence, The value of R2 resistor in series is 6Ω
Answer:
1.
d
. A stream of particles
2. D. Radiowave
3. Microwaves
Answer:
5.5 × 10-2 hertz
Explanation:
The time taken by a wave crest to travel a distance equal to the length of wave is known as wave period.
= 0.055 per second (1 cycle per second = 1 Hertz)
Thus, we can conclude that the frequency of the wave is 5.5 X 10^{-2} hertz.
Hopes this helps, love <3
To solve this problem it is necessary to apply the concepts related to wavelength as a function of frequency and speed, as well as to determine the wavelength as a function of length.
From the harmonic vibration generated we know that the total length of the string will be equivalent to a half of the wavelength, that is

Where,
Wavelength
Therefore the wavelength for us would be,

From the relationship of speed, frequency and wavelength we know that



Therefore the speed of the wave is 232.75m/s
Answer:
a) 
b) 
Explanation:
From the exercise we know that



From dynamics we know that the formula for average velocity is:

a) For the three intervals:



b) The average velocity for the entire motion can be calculate by the following formula:
