1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena-2011 [213]
3 years ago
15

A ball is thrown horizontally from the top of a building 14.9 m high. The ball strikes the ground at a point 107 m from the base

of the building. The acceleration of gravity is 9.8 m/s 2 . Find the time the ball is in motion.Find the initial velocity of the ball. Answer in units of m/sFind the x component of its velocity just be- fore it strikes the ground.Answer in units of m/sFind the y component of its velocity just be- fore it strikes the ground.Answer in units of m/s
Physics
1 answer:
umka2103 [35]3 years ago
8 0

Answer:

1) t=1.743 sec

2)Vo=61.388  m/sec

3)the x component of its velocity just be- fore it strikes the ground is the same as the  initial velocity of the ball that is=61.388  m/sec

4)Vf=17.08 m/s

Explanation:

1)From second equation of motion we get

h=Vit+(1/2)gt^2

here in case(a): Vi=0 m/s,h=14.9m,,put these values in above equation to find the time the ball is in motion

14.9=(0)*t+(1/2)(9.8)t^2

t^2=14.9/4.9

t^2=3.040 sec

t=1.743 sec

2) s=Vo*t

Putting values we get

107=Vo*1.743

Vo=61.388  m/sec

3)the x component of its velocity just be- fore it strikes the ground is the same as the  initial velocity of the ball that is=61.388  m/sec

4)From third equation of motion we know that

Vf^2-Vi^2=2gh

here Vi=0 m/s,h=14.9 m

Vf^2=Vi^2+2gh=0+2(9.8)(14.9)

Vf^2=292.04

Vf=17.08 m/s

You might be interested in
Karla Ayala pulls a sled on an icy road (dangerous!). Because of Karla's pull, the tension force is 151 N, and the rope makes a
skelet666 [1.2K]

Answer:

W = 1418.9 J = 1.418 KJ

Explanation:

In order to find the work done by the pull force applied by Karla, we need to can use the formula of work done. This formula tells us that work done on a body is the product of the distance covered by the object with the component of force applied in the direction of that displacement:

W = F.d

W = Fd Cosθ

where,

W = Work Done = ?

F = Force = 151 N

d = distance covered = 10 m

θ = Angle with horizontal = 20°

Therefore,

W = (151 N)(10 m) Cos 20°

<u>W = 1418.9 J = 1.418 KJ</u>

6 0
3 years ago
Neglecting air resistance, what maximum height will be reached by an arrow launched straight upward with an initial speed of 35
tankabanditka [31]
The velocity at the maximum height will always be 0. Therefore, you will count your final velocity as 0, and your initial velocity as 35 m/s. Next, we know that the acceleration will be 9.8 m/s^2. How? Because the ball is thrown directly upward, and the only force acting on it will be the force of gravity pushing it back down.

The formula we use is h = (Vf^2 - Vi^2) / (2*-9.8m/s^2)

Plugging everything in, we have h = (0-1225)/(19.6) = 62.5 meters is the maximum height.
3 0
3 years ago
Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her h
mojhsa [17]

Answer:

Isabella will not be able to spray Ferdinand.

Explanation:

We'll begin by calculating the time taken for the water to get to the ground from the hose held at 1 m above the ground. This can be obtained as follow:

Height (h) = 1 m

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) =.?

h = ½gt²

1 = ½ × 9.8 × t²

1 = 4.9 × t²

Divide both side by 4.9

t² = 1/4.9

Take the square root of both side

t = √(1/4.9)

t = 0.45 s

Next, we shall determine the horizontal distance travelled by the water. This can be obtained as follow:

Horizontal velocity (u) = 3.5 m/s

Time (t) = 0.45 s

Horizontal distance (s) =?

s = ut

s = 3.5 × 0.45

s = 1.58 m

Finally, we shall compare the distance travelled by the water and the position to which Ferdinand is located to see if they are the same or not. This is illustrated below:

Ferdinand's position = 10 m

Distance travelled by the water = 1.58 m

From the above, we can see that the position of the water (i.e 1.58 m) and that of Ferdinand (i.e 10 m) are not the same. Thus, Isabella will not be able to spray Ferdinand.

8 0
3 years ago
A starship blasts past the earth at 2.0*10^8 m/s .Just after passing the earth, the starship fires a laser beam out its back of
Vilka [71]

Answer:

at the speed of light (c=3.0\cdot 10^8 m/s)

Explanation:

The second postulate of the theory of the special relativity from Einstein states that:

"The speed of light in free space has the same value c in all inertial frames of reference, where c=3.0\cdot 10^8 m/s"

This means that it doesn't matter if the observer is moving or not relative to the source of ligth: he will always observe light moving at the same speed, c.

In this problem, we have a starship emitting a laser beam (which is an electromagnetic wave, so it travels at the speed of light). The startship is moving relative to the Earth with a speed of 2.0*10^8 m/s: however, this is irrelevant for the exercise, because according to the postulate we mentioned above, an observer on Earth will observe the laser beam approaching Earth with a speed of c=3.0\cdot 10^8 m/s.

7 0
3 years ago
A boat leaves the dock at t = 0.00 s and, starting from rest, maintains a constant acceleration of (0.461 m/s2)i relative to the
liberstina [14]

Answer:

At t=4.82 s, the boat is moving at 3.464 m/s.

At t=4.82 s, the boat is 13.112 m from the dock.

Explanation:

The speed of the boat in j'th direction remains constant for all times (vj=2.16 m/s), however, the speed in i'th direction is changing due to the constant acceleration (0.461 m/s^2)i.

In order to find the velocity of the boat a t=4.82 s, first we need to compute the velocity of the boat relative to the water in the i direction (vi_b) at t=4.82 s:

vi_b = a*t = (0.461 m/s^2)*(4.82 s) = 2.222 m/s

Now, we add this velocity to the velocity of the water in the i direction:

vi = vi_b + vi_w = 2.222 m/s + 0.486 m/s = 2.708 m/s

Therefore, the speed of the boat at t = 4.82 s is: v = (vi, vj) = (2.708, 2.16) m/s. Finally, to find its speed, we just calculate the magnitude of v and obtain that the speed is: 3.464 m/s.

For the second question, first we will find the distance that the boat moved in the i'th direction and then in the j'th direction.

The speed in the i'th direction, for all times, is given by:

(0.485 + 0.461*t) and in order to find the distance advanced in the i'th direction (di) during 4.82 s, we need to integrate this velocity:

di = 0.485*t + (0.461*t^2)/2 (evaluated from t=0 to t =4.82) = 0.485*(4.82) + (0.461*(4.82)^2)/2 = 2.337 + 5.634 = 7.971 m

The speed in j'th direction, for all times, is given by:

2.16 and in order to find the distance advanced in the j'th direction (dj) during 4.82 s, we need to integrate this velocity:

dj = 2.16*t (evaluated from t=0 to t =4.82) = (2.16)*(4.82) = 10.411 m

Using Pythagoras' Theorem, we find that the the boat is at 13.112 m from the dock at t = 4.82 s.

4 0
3 years ago
Other questions:
  • A sodium lamp emits light at the power P = 70.0 W and at the wavelength λ = 600 nm, and the emission is uniformly in all directi
    10·1 answer
  • You and your housemate have an argument over the cost of the electric bill. You want to turn off the outside porch light before
    6·1 answer
  • What is the effect on climate from these factors??
    15·1 answer
  • Which object has the least amount of kinetic energy? a car driving down a road a soccer ball rolling down a hill a bicycle locke
    6·2 answers
  • How do magnetics ruin electronic devices
    5·2 answers
  • A cosmic-ray proton in interstellar space has an energy of 10.0 MeV and executes a circular orbit having a radius equal to that
    9·1 answer
  • What do we call the combination of all food chains in a given ecosystem
    8·1 answer
  • heres free wallpapers and pnts! :)) (phone and PC and chromebook wallpapers) (credits to those who made them !)
    5·1 answer
  • A 55.2 kg softball player moving 3.11 m/s slides across dirt with uk=0.310. How far does she slide before coming to a stop?​
    15·1 answer
  • The pressure at the bottom of a jug filled with water does NOT depend on the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!