Answer:
68% of the sample can be expected to fall between 28 and 32 cm
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 30
Standard deviation = 2
What proportion of the sample can be expected to fall between 28 and 32 cm
28 = 30-2
28 is one standard deviation below the mean
32 = 30 + 2
32 is one standard deviation above the mean
By the Empirical Rule, 68% of the sample can be expected to fall between 28 and 32 cm
Answer:
30 out of 50 times.
Step-by-step explanation:
1 attempt represents 3 out of 5 times.
10 attempts equals 1 attempt x 10.
Multiply numbers 3 and 5 by 10.
3 x 10 = 30
5 x 10 = 50.
Therefore, your solution is 30 / 50 times.
Let n = number
" product of 3 and a squared number" translates to 3n²
"sum of the number and 4" translates to n + 4
The word "is" becomes your equals sign.
3n² = n + 4 is your equation.
Answer:
z score Perry 
z score Alice 
Alice had better year in comparison with Perry.
Step-by-step explanation:
Consider the provided information.
One year Perry had the lowest ERA of any male pitcher at his school, with an ERA of 3.02. For the males, the mean ERA was 4.206 and the standard deviation was 0.846.
To find z score use the formula.

Here μ=4.206 and σ=0.846



Alice had the lowest ERA of any female pitcher at the school with an ERA of 3.16. For the females, the mean ERA was 4.519 and the standard deviation was 0.789.
Find the z score
where μ=4.519 and σ=0.789



The Perry had an ERA with a z-score is –1.402. The Alice had an ERA with a z-score is –1.722.
It is clear that the z-score value for Perry is greater than the z-score value for Alice. This indicates that Alice had better year in comparison with Perry.