Answer:
B). 3.4 s
Explanation:
As we can see the graph is given between velocity and time
so here we can see that the velocity is changing here with time and initially for some time it moves with constant speed
Then it's speed decreases to next few second and then speed increases to its maximum value
The time after which velocity comes to its maximum value will reach after t = 3 s
so out of the all given options most correct option will be

Answer:
The thrown rock strike 2.42 seconds earlier.
Explanation:
This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

So now we have an equation and unkown value.
for the thrown rock

for the dropped rock

solving both equation with the quadratic formula:

we have:
the thrown rock arrives on t=5.4 sec
the dropped rock arrives on t=7.82 sec
so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)
Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
345.2 = 89.5(C)(305 - 285)
C = 0.1928 </span>J/g•K
On a flat surface a moving bicycle has more kinetic energy than a stationary car