Answer:
3658.24m
Explanation:
Hello!
the first thing that we must be clear about is that the train moves with constant acceleration
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.

Vf = final speed
=160km/h=44.4m/s
Vo = Initial speed
=42.9km/h=11.92m/s
A = acceleration
=0.25m/s^2
X = displacement
solving

the distance traveled by the train is 3658.24m
Falling from an airplane.
The answer is C) The water pushed up on the skis
The water reacts to the downward force of the skis by pushing back up against the skis.
According to the task there should be the graph that supports Sally's hike, but after looking on the options it seems that Sally doesn't walks at a constant rate and there is the negative option that coincides with my thoughts. So, I bet the false statement is the third option represented in the scale above.
Answer:
An investigation is made to determine the performance of simple thin airfoils in the slightly supersonic flow region with the aid of the nonlinear transonic theory first developed by von Kármán[1]. Expressions for the pressure coefficient across an oblique shock and a Prandtl-Meyer expansion are developed in terms of a transonic similarity parameter. Aerodynamic coefficients are calculated in similarity form for the flat plate and asymmetric wedge airfoils, and curves are plotted. Sample curves for a flat plate and a specific asymmetric wedge are plotted on the usual coordinate grid of Cl, Cd,andCmc/4versus angle of attack and Cl versus Mach Number to illustrate the apparent features of nonlinear flow.
Explanation: