1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
3 years ago
13

Which are characteristics of mammals? Check all that apply.

Physics
1 answer:
Neporo4naja [7]3 years ago
6 0

Answer:

one of the characteristics of a mammal is their several hollow bones another is their three chambered heart and the last is highly developed nervous system

Explanation:

the reason i picked those three is because not all mammals live their life on land and also mammals font have internal fertillization when they are done they take care of their babies and when they grow up they live their own life

You might be interested in
The 20-g bullet is travelling at 400 m/s when it becomes embedded in the 2-kg stationary block. The coefficient of kinetic frict
nikklg [1K]

Answer:

The distance the block will slide before it stops is 3.3343 m

Explanation:

Given;

mass of bullet, m₁ = 20-g = 0.02 kg

speed of the bullet, u₁ =  400 m/s

mass of block, m₂ = 2-kg

coefficient of kinetic friction,  μk = 0.24

Step 1:

Determine the speed of the bullet-block system:

From the principle of conservation of linear momentum;

m₁u₁ + m₂u₂ = v(m₁ + m₂)

where;

v is the speed of the bullet-block system after collision

(0.02 x 400) + (2 x 0) = v (0.02 + 2)

8 = v (2.02)

v = 8/2.02

v = 3.9604 m/s

Step 2:

Determine the time required for the bullet-block system to stop

Apply the principle of conservation momentum of the system

v(m_1+m_2) -F_kt = v_f(m_1 +m_2)\\\\v(m_1+m_2) -N \mu_kt = v_f(m_1 +m_2)\\\\v(m_1+m_2) -g(m_1 +m_2) \mu_kt = v_f(m_1 +m_2)\\\\3.9604(2.02)-9.8(2.02)0.24t = v_f(2.02)\\\\8 - 4.751t = 2.02v_f\\\\3.9604 - 2.352t = v_f

when the system stops, vf = 0

3.9604 -2.352t = 0

2.352t = 3.9604

t = 3.9604/2.352

t = 1.684 s

Thus, time required for the system to stop is 1.684 s

Finally, determine the distance the block will slide before it stops

From kinematic, distance is the product of speed and time

S = \int\limits {v} \, dt \\\\S = \int\limits^t_0 {(3.9604-2.352t)} \, dt\\\\ S = 3.9604t - 1.176t^2

Now, recall that t = 1.684 s

S = 3.9604(1.684) - 1.176(1.684)²

S = 6.6693 - 3.3350

S = 3.3343 m

Thus, the distance the block will slide before it stops is 3.3343 m

3 0
3 years ago
Read 2 more answers
A 0.20-kg object is attached to the end of an ideal horizontal spring that has a spring constant of 120 N/m. The simple harmonic
Umnica [9.8K]

Answer:

<em>A = 6.9 cm</em>

Explanation:

<u>Simple Harmonic Motion</u>

A mass-spring system is a common example of a simple harmonic motion device since it keeps oscillating when the spring is stretched back and forth.

If a mass m is attached to a spring of constant k and they are set to oscillate, the angular frequency of the motion is

\displaystyle w=\sqrt{\frac{k}{m}}

The equation for the motion of the object is written as a sinusoid:

\displaystyle X=A\ cos\ w\ t

Where A is the amplitude.

The instantaneous speed is computed as the derivative of the distance

\displaystyle X'=V=-A\ w\ sin\ w\ t

And the maximum speed is

\displaystyle V_{max}= A\ w

Solving for the amplitude

\displaystyle A= \frac{V_{max}}{w}

Computing w

\displaystyle w =\sqrt{\frac{120}{0.2}}=24.5\   rad/ s

Calculating A

\displaystyle A=\frac{1.7}{24.5}=0.069\ m

\displaystyle \boxed{A=6.9\ cm}

7 0
3 years ago
A 4,000-kg car traveling at 20m/s hits a wall with a force of 80,000 N and comes to a stop. What was the impact time?
Nookie1986 [14]
Rate of change of momentum = impact force
(m*v-m*u)/t = F
4000*20/t = 80000 (note: v is zero as it stopped)
<span>soo, t = 1 sec</span>
7 0
4 years ago
A box with a mass of 12.5kg sits on the floor how high would you need to lift it has a GPE of 568j
Degger [83]
GPE=mgh
m= 12.5kg
g= 9.81 always
h=?

568=12.5*9.81*h
Solve for h
You will get 4.63m
4 0
3 years ago
What force does a trampoline have to apply to a 45.0-kg gymnast to accelerate her straight up at 7.50 m/s^2? (a) 104N (b) 338 N
Brilliant_brown [7]

Answer:

b) 338 N

Explanation: let m be the mass of the gymnast and a be the acceleration of the gymnast.

the force required to accelerate the gymnast is given by:

F = m×a

  = (45.0)×(7.50)

  = 337.5 N

Therefore, the force a trampoline has to apply is 138 N.

6 0
3 years ago
Other questions:
  • Which activity best reflects a muscle movement working against gravity? a lifting the torso during a sit up b lowering the body
    13·2 answers
  • During a science fair, a group of students came up with the following question: “Is color an inherent property in objects or is
    5·2 answers
  • What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000-kg car (a large car) resti
    5·1 answer
  • A covalent bond in which electrons are shared equally is called a
    14·1 answer
  • How do you use the coefficient to calculate the number of atoms in each molecule?​
    6·2 answers
  • Which of the following statements is true?
    5·1 answer
  • A spring toy jumps up from the floor and comes back down to the floor. Its initial speed is 12 m/s. What is the
    8·1 answer
  • If the mass of the body is tripled and its velocity becomes doubled, then the linear momentum of the body will​
    5·1 answer
  • Calculate the first and second velocities of the car with four washers attached to the pulley, using the formulas v1 = 0. 25 m /
    11·1 answer
  • if you are looking at the sky from the continental united states, the north celestial pole would have an angular height (an alti
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!