1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
2 years ago
13

Which are characteristics of mammals? Check all that apply.

Physics
1 answer:
Neporo4naja [7]2 years ago
6 0

Answer:

one of the characteristics of a mammal is their several hollow bones another is their three chambered heart and the last is highly developed nervous system

Explanation:

the reason i picked those three is because not all mammals live their life on land and also mammals font have internal fertillization when they are done they take care of their babies and when they grow up they live their own life

You might be interested in
What is the energy in joules of a mole of photons associated with red light of wavelength 7.00 × 102 nm?
konstantin123 [22]
<span>The energy of a single photon is given by E = hc/lambda, where h is Planck's constant, c is the speed of light, and lambda is the wavelength. Plugging the values in gives E = 6.63E-34 x 3.00E8 / 700E-9 = 2.84E-19 Joules Now one mole of substance is equivalent to 6.02E23 particles, so one mole of these photons will be: 2.84E-19 x 6.02E23 = 1.71E5 Joules</span>
4 0
3 years ago
An electric field of 1.27 kV/m and a magnetic field of 0.490 T act on a moving electron to produce no net force. If the fields a
lesantik [10]

Answer:

v = 2591.83 m/s

Explanation:

Given that,

The electric field is 1.27 kV/m and the magnetic field is 0.49 T. We need to find the electron's speed if the fields are perpendicular to each other. The magnetic force is balanced by the electric force such that,

qE=qvB\\\\v=\dfrac{E}{B}\\\\v=\dfrac{1.27\times 10^3}{0.49}\\\\v=2591.83\ m/s

So, the speed of the electron is 2591.83 m/s.

8 0
3 years ago
NASA is designing a Mars-lander that will enter the Martian atmosphere at high speed. To land safely it must slow to a constant
Viktor [21]

Answer:

a) maximum mass of the Mars lander to ensure it can land safely is 200 kg

b) area of the parachute required is 480 m² which is larger than 400 m²

c) area of the parachute should be 12.68 m²

Explanation:

Given the data in the question;

V = 20 m/s

A = 200 m²

drag co-efficient CD = 1.855

g = 3.71 m/s²

density of the atmospheric pressure β = 0.01 kg/m³

a. Calculate the maximum mass of the Mars lander to ensure it can land safely?

Drag force FD = 1/2 × CD × β × A × V²

we substitute

FD = 1/2 × 1.855 × 0.01 kg/m × 200 m² × ( 20 m/s )²

FD = 742 N

we know that;

FD = Fg

Fg = gravity force

Fg = mg

so

FD = mg

m = FD/g

we substitute

m = 742 N / 3.71 m/s²

m = 200 kg

Therefore, the maximum mass of the Mars lander to ensure it can land safely is 200 kg

b. The mission designers consider a larger lander with a mass of 480 kg. Show that the parachute required would be larger than 400 m²;

Given that;

M = 480 kg

Show that the parachute required would be larger than 400 m²

we know that;

FD = Fg = Mg = 480 kg × 3.71 m/s²

FD = 1780.8 N

Now, FD = 1/2 × CD × β × A × V², we solve for A

A = FD / 0.5 × CD × β × V²

we substitute

A = 1780.8  / 0.5 × 1.855 × 0.1 × (20)²

A = 1780.8 / 3.71

A = 480 m²

Therefore, area of the parachute required 480 m² which is larger than 400 m²

c. To test the lander before launching it to Mars, it is tested on Earth where g = 9.8 m/s^2 and the atmospheric density is 1.0 kg m-3. How big should the parachute be for the terminal speed to be 20 m/s, if the mass of the lander is 480 kg?

Given that;

g = 9.8 m/s²,

β" = 1 kg/m³

v" = 20 m/s

M" = 480 kg

we know that;

FD = Fg = M"g

FD = 480 kg × 9.8 m/s² = 4704 N

from the expression; FD = 1/2 × CD × β × A × V²

A = FD / 0.5 × CD × β" × V"²

we substitute

A = 4704 / 0.5 × 1.855 × 1 × (20)²

A = 4704 / 371

A = 12.68 m²

Therefore area of the parachute should be 12.68 m²

3 0
3 years ago
Question 8: Cosmology (8 points)
STatiana [176]

Big bang happened about 13.7 billion years ago in our universe.

<h3>Describe the beginning of the universe according to the big bang theory?</h3>

According to the big bang theory, about 13.7 billion years ago, an explosive expansion began, expanding our universe outwards faster than the speed of light.

<h3>Describe the future of the universe according to the flat model?</h3>

According to the flat model, the universe is infinite and will continue to expand forever because the universe is expanding.

<h3>What is cosmic background radiation? </h3>

Cosmic background radiation is a weak radio-frequency radiation that is traveling through outer space in every direction. It is the residual radiation of the big bang, when the universe was very hot.

<h3>How do observations of the cosmic background radiation provide evidence to support the big bang theory? </h3>

The Big Bang theory predicts that the early universe was a very hot place and that as it expands, the gas within it cools. Thus the universe has all over radiation which is called the “cosmic microwave background".

Learn more about big bang here: brainly.com/question/10865002

#SPJ1

6 0
1 year ago
n ultraviolet light beam having a wavelength of 130 nm is incident on a molybdenum surface with a work function of 4.2 eV. How f
pashok25 [27]

Answer:

The speed of the electron is 1.371 x 10⁶ m/s.

Explanation:

Given;

wavelength of the ultraviolet light beam, λ = 130 nm = 130 x 10⁻⁹ m

the work function of the molybdenum surface, W₀ = 4.2 eV = 6.728 x 10⁻¹⁹ J

The energy of the incident light is given by;

E = hf

where;

h is Planck's constant = 6.626 x 10⁻³⁴ J/s

f = c / λ

E = \frac{hc}{\lambda} \\\\E = \frac{6.626*10^{-34} *3*10^{8}}{130*10^{-9}} \\\\E = 15.291*10^{-19} \ J

Photo electric effect equation is given by;

E = W₀ + K.E

Where;

K.E is the kinetic energy of the emitted electron

K.E = E - W₀

K.E = 15.291 x 10⁻¹⁹ J - 6.728 x 10⁻¹⁹ J

K.E = 8.563 x 10⁻¹⁹ J

Kinetic energy of the emitted electron is given by;

K.E = ¹/₂mv²

where;

m is mass of the electron = 9.11 x 10⁻³¹ kg

v is the speed of the electron

v = \sqrt{\frac{2K.E}{m} } \\\\v =  \sqrt{\frac{2*8.563*10^{-19}}{9.11*10^{-31}}}\\\\v = 1.371 *10^{6} \ m/s

Therefore, the speed of the electron is 1.371 x 10⁶ m/s.

8 0
3 years ago
Other questions:
  • 1 lb equals how many grams
    10·2 answers
  • What type of radiation does nuclear fission produce?
    6·2 answers
  • What will happen to the speed of an object if the net force is in the direction of the motion?
    8·2 answers
  • Help help help please , i will give brainliest
    5·2 answers
  • A gas is enclosed in a cylinder fitted with a light frictionless piston and maintained at atmospheric pressure. When 3300 kcal o
    8·1 answer
  • What tension must a 50.0 cm length of string support in order to whirl an attached 1,000.0 g stone in a circular path at 5.00 m/
    8·1 answer
  • If a wire lies withina magnetic field what must be true for the magnetic field to produce an electric current in the wire
    7·1 answer
  • A mass of 0.8 kg is fixed at a vertical spring with an unknown spring constant. When spring is released from rest, it extends to
    9·1 answer
  • "Conclude how Newton's first, second, and third laws apply to you eating your breakfast." ​
    9·1 answer
  • A scientist shines light from a source onto a piece of metal, and no electrons are released by the metal. Increasing the intensi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!