One of the efficient concepts that can help us find the number of turns of the cable is through the concept of induced voltage or electromotive force given by Faraday's law. The electromotive force or emf can be described as,

Where,
N = Number of loops
B = Magnetic Field
A = Cross-sectional Area
= Angular velocity
Re-arrange to find N,

Our values are given as,




Replacing at our equation we have:



Therefore the number of loops of wire should be wound on the square armature is 32 loops
Answer:
It's called an ampere!
Explanation:
The SI unit of electric current is the ampere, which is the flow of electric charge across a surface at the rate of one coulomb per second. The ampere (symbol: A) is an SI base unit Electric current is measured using a device called an ammeter.
Hope this helps :)
To solve this problem we will use the Ampere-Maxwell law, which describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

Where,
B= Magnetic Field
l = length
= Vacuum permeability
= Vacuum permittivity
Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

Recall that the speed of light is equivalent to

Then replacing,


Our values are given as




Replacing we have,



Therefore the magnetic field around this circular area is 
it allows only a reduced number of electrons to flow through it.
No it won't. It'll vary inversely as the square of the separation.