Pan 4: theyre the smallest and most broken down :)
<u>Answer:</u> The molarity of Iron (III) chloride is 0.622 M.
<u>Explanation:</u>
Molarity is defined as the number of moles present in one liter of solution. The equation used to calculate molarity of the solution is:

Or,

We are given:
Mass of iron (III) chloride = 1.01 g
Molar mass of iron (III) chloride = 162.2 g/mol
Volume of the solution = 10 mL
Putting values in above equation, we get:

Hence, the molarity of Iron (III) chloride is 0.622 M.
Answer:
4.214 × 10^23 molecules.
Explanation:
Number of molecules in a substance can be calculated by multiplying the number of moles in that substance by Avagadro's number, which is 6.02 × 10^23.
That is, no. of molecule = n × Avagadro constant
In this case, there are 0.7 moles of fructose. Hence;
number of molecules = 0.7 × 6.02 × 10^23
no. of molecule = 4.214 × 10^23 molecules.
Answer:
Explanation:
It is easier if you convert the kelvin temperature into Celsius degrees:
- ºC = T - 273.15 = 150 - 273.15 = -123.15ºC
Now, you know that that is a very cold temperature. Thus, may be the oxygen is not gas any more but it changed to liquid . . . or solid?
You must search for the boiling point and melting (freezing) point of oxygen in tables or the internet. At standard pressure (about 1 atm) they are:
- Melting point: −218.79 °C,
- Boiling point: −182.962 °C
That means that:
- below -218.79ºC oxygen is solid (not our case).
- between -218.79ºC and -182.962ºC oxygen is liquid (not our case)
- over -182.962ºC oxygen is a gas. This is our case, because -123.15ºC is a higher temperature than -182.962ºC.
Hence, <em>the state of matter of oxygen at 150K</em>, and standard pressure, is gas.