Answer:
a) x = 40 t
, y = 39 t
, z = 6 + 32 t - 16 t
², b) x = 80 feet
, y = 78 feet
, the ball came into the field
Explanation:
a) This is a projectile launch exercise, where in the x and y axes there is no acceleration and in the z axis the acceleration of the acceleration of gravity, let's write the equations of motion in each axis
Since the cast is in the center of the field, let's place the coordinate system
x₀ = 0
y₀ = 0
z₀ = 6 feet
x-axis (towards end zone, GOAL zone)
x = xo + v₀ₓ t
x = 40 t
y-axis (field width)
y = y₀ +
t
y = 39 t
z axis (vertical)
z = z₀ + v_{oz} t - ½ g t²
z = 6 + 32 t - ½ 32 t²
z = 6 + 32 t - 16 t
²
b) The player catches the ball at the same height as it came out, so we can find the time it takes to arrive
z = 6
6 = 6 + 32 t - 16 t²
(t - 2)t = 0
t=0 s
t= 2 s
The ball position
x = 40 2
x = 80 feet
y = 39 2
y = 78 feet
the dimensions of the field from the coordinate system (center of the field) are
x_total = 150 feet
y _total = 80 feet
so we can see that the ball came into the field
Answer:
W= 4.89 KJ
Explanation:
Lets take
temperature of hot water T₁ = 100⁰C
T₁ = 373 K
Temperature of cold ice T₂= 0⁰C
T₂ = 273 K
The latent heat of ice LH= 334 KJ
The heat rejected by the engine Q= m .LH
Q₂= 0.04 x 334
Q₂= 13.36 KJ
Heat gain by engine = Q₁
For Carnot engine


Q₁ = 18.25 KJ
The work W= Q₁ - Q₂
W= 18.25 - 13.36 KJ
W= 4.89 KJ
Answer:
t = 0.33h = 1200s
x = 18.33 km
Explanation:
If the origin of coordinates is at the second car, you can write the following equations for both cars:
car 1:
(1)
xo = 10 km
v1 = 55km/h
car 2:
(2)
v2 = 85km/h
For a specific value of time t the positions of both cars are equal, that is, x=x'. You equal equations (1) and (2) and solve for t:


The position in which both cars coincides is:

Explanation:
change 0.5 g to kg so 0.005kg then change 100 ml to m so 0.001m so density=mass over volume so from there you can continue