Has mass and occupied space
As per the question the initial speed of the car [ u] is 42 m/s.
The car applied its brake and comes to rest after 5.5 second.
The final velocity [v] of the car will be zero.
From the equation of kinematics we know that
[ here a stands for acceleration]



Here a is taken negative as it the car is decelerating uniformly.
We are asked to calculate the stopping distance .
From equation of kinematics we know that
[here S is the distance]
![= 42*5.5 +\frac{1}{2} [-7.64] [5.5]^2 m](https://tex.z-dn.net/?f=%3D%2042%2A5.5%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5B-7.64%5D%20%5B5.5%5D%5E2%20m)
[ans]
Answer:
Injury to a vein increases the risk of forming a blood clot.
Explanation:
hoped this helped
Answer: K.E = 0.4 J
Explanation:
Given that:
M = 1.0 kg
h = 0.04 m
K.E = ?
According to conservative of energy
K.E = P.E
K.E = mgh
K.E = 1 × 9.81 × 0.04
K.E = 0.3924 Joule
The kinetic energy of the pendulum at the lowest point is 0.39 Joule
Answer:
A) d_o = 20.7 cm
B) h_i = 1.014 m
Explanation:
A) To solve this, we will use the lens equation formula;
1/f = 1/d_o + 1/d_i
Where;
f is focal Length = 20 cm = 0.2
d_o is object distance
d_i is image distance = 6m
1/0.2 = 1/d_o + 1/6
1/d_o = 1/0.2 - 1/6
1/d_o = 4.8333
d_o = 1/4.8333
d_o = 0.207 m
d_o = 20.7 cm
B) to solve this, we will use the magnification equation;
M = h_i/h_o = d_i/d_o
Where;
h_o = 3.5 cm = 0.035 m
d_i = 6 m
d_o = 20.7 cm = 0.207 m
Thus;
h_i = (6/0.207) × 0.035
h_i = 1.014 m