Hello.
The answer is <span>+313.766 J/mol·K
</span>
Use the coefficients of the reaction and sum the product entropies less the reactant entropies:
4*188.8 + 2*213.7 - 3*205.1 - 2* 126.8 = 313.7 J/mol*K
Have a nice day
Answer:
The coefficient of Z₂ is 1.
Explanation:
From the question given above:
X + ZY —> XY + Z₂
Next, we shall balance the equation to obtain the coefficient of Z₂. This can be obtained as follow:
X + ZY —> XY + Z₂
There is 1 atom of Z on the left side and 2 atoms on the right side. It can be balance by putting 2 in front of ZY as shown below:
X + 2ZY —> XY + Z₂
There are 2 atoms of Y on the left side and 1 atom on the right side. It can be balance by putting 2 in front of XY as shown below:
X + 2ZY —> 2XY + Z₂
Now, we have 1 atom of X on the left side and 2 atoms on the right side. It can be balance by putting 2 in front of X as shown below:
2X + 2ZY —> 2XY + Z₂
Now the equation is balanced.
Thus, the coefficient of Z₂ is 1.
Answer:
A. m C5H12 = 108.23 g
B. m F2 = 547.142 g
C. m Ca(CN)2 = 71.85 g
Explanation:
- mass (m) = mol (n) × molecular weigth (Mw)
∴ Mw C5H12 = ((12.011)(5)) + ((1.008)(12)) = 72.151 g/mol C5H12
∴ Mw F2 = (18.998)(2) = 37.996 g/mol F2
∴ Mw = Ca(CN)2 = 40.078+((12.011+14.007)(2)) = 92.114 g/mol Ca(CN)2
A. m C5H12 = ( 1.50 mol)×(72.151 g/mol) = 108.23 g C5H12
B. m F2 = (14.4 mol)×(37.996 g/mol) = 547.142 g F2
C. m Ca(CN)2 = (0.780 mol)×(92.114 g/mol) = 71.85 g Ca(CN)2
Li+ has a smaller ionic radius than K+
and smaller molecules have more collisions/interactions between each other
<h3>What is ion-solvent interaction ?</h3>
In the case of ion-solvent interactions, the state in which the interac-tions exist is an obvious one; it is the situation in which ions are inside the solvent.
- Ions are charged particles, and charges interact with other charges. So there will also be ion-ion, as well as ion-solvent, interactions in the solution.
- In the process of solvation, ions are surrounded by a concentric shell of solvent. Solvation is the process of reorganizing solvent and solute molecules into solvation complexes.
Learn more about Ion-solvent interaction here:
brainly.com/question/21307101
#SPJ4