Explanation:
Apply the mass of balance as follows.
Rate of accumulation of water within the tank = rate of mass of water entering the tank - rate of mass of water releasing from the tank



[/tex]\frac{dh}{dt} + \frac{0.01}{0.01}h[/tex] = 

+ h = 1
= 1 - h
= dt
= t + C
Given at t = 0 and V = 0
= 0
or, h = 0
-ln(1 - h) = t + C
Initial condition is -ln(1) = 0 + C
C = 0
So, -ln(1 - h) = t
or, t =
........... (1)
(a) Using equation (1) calculate time to fill the tank up to 0.6 meter from the bottom as follows.
t =
t =
= 
= 0.916 seconds
(b) As maximum height of water level in the tank is achieved at steady state that is, t =
.
1 - h = exp (-t)
1 - h = 0
h = 1
Hence, we can conclude that the tank cannot be filled up to 2 meters as maximum height achieved is 1 meter.
Answer:
For these problems, we need to compare the theoretical yield that we'd get from performing stoichiometry to the actual yield stated in the problem. % yield is the actual yield/theoretical yield x 100%
Cu + 2 AgNO₠→ Cu(NOâ‚)â‚‚ + 2 Ag ==> each mole of copper yields two moles of silver
12.7-g Cu x ( 1 mol Cu /63.5-g Cu) x ( 2 mol Ag / 1 mol Cu) x (108-g Ag / 1 mol Ag) = 43.2-g Ag. This is the theoretical yield. Now, since we got 38.1-g Ag our % yield is:
38.1-g/43.2-g x 100% = 88.2%
Explanation:
<u>Answer:</u>
Steep slopes on the contour map are identified using contour lines which are closely spaced.
<u>Explanation:</u>
Contour map also known as topographic maps are used to represent the three-dimensional portion of the earth’s surface in two-dimensional space. This map is used to represent the surface of the land such as steep, slopes, valleys. The contour maps are used in geological studies to understand the configuration of the earth's surface. Terms like map scale, vertical scale, contour lines are used on the contour map. Elevations are represented using contour lines. Contour lines placed very close to each represent the steep slopes and contour lines that are spaced farther away from each other represent the gentle slopes.
Answer:
Glucose, found in the food animals eat, is broken down during the process of cellular respiration into an energy source called ATP. When excess ATP and glucose are present, the liver converts them into a molecule called glycogen, which is stored for later use.
A mole of any chemical compound contains the same number of molecules - about 6.022 × 10²³ molecules.
So, 1 mole of H₂O₂, 1 mole of C₂H₂ and 1 mole of CO contain the same number of molecules.