Surface area and Mass
When a leaf falls, it is being accelerated by gravity to the ground but opposed by air resistance also the drag. The net force on a leaf will therefore be calculated by subtracting its weight of the leaf from its drag.
<h3>What is Air resistance ?</h3>
Air exerts a force known as air resistance. When an object is travelling through the air, the force works in the opposite direction.
- While a sports vehicle with a streamlined design will encounter reduced air resistance and experience less drag, the automobile will be able to move more quickly than a truck with a flat front.
- The speed, area, and shape of the object passing through the air all affect air resistance. Air density and resistance are affected by altitude, temperature, and humidity. The resistance increases with speed and area, respectively.
Learn more about Air resistance here:
brainly.com/question/27965545
#SPJ4
Answer:
An atom always has the same number of electrons as protons. Electrons have an electric charge of -1 and protons have an electric charge of +1. Therefore, the charges of an atom's electrons and protons “cancel out.” This explains why atoms are neutral in electric charge.
Explanation:
Answer:
This same Hawaii telescope, which would be 4 km across water level, can't provide an appropriate version of distanced planetary bodies. A further overview is provided below.
Explanation:
- The surface area of that same earth's orbit seems to be approximately 480 km heavy. The atmosphere isn't translucent to the only certain wavelength range of the radioactivity. Not because all-stars, as well as gliders, emit specific wavelengths, but several of them generate ultraviolet as well as infrared.
- Those same radiations have either been mediated primarily as well as passes through the atmosphere. Due to the Blockage, they can't even be interpreted with such a similar quality unless the telescope would be positioned throughout the portion of the atmosphere.
Answer:
0.775
Explanation:
The weight of an object on a planet is equal to the gravitational force exerted by the planet on the object:

where
G is the gravitational constant
M is the mass of the planet
m is the mass of the object
R is the radius of the planet
For planet A, the weight of the object is

For planet B,

We also know that the weight of the object on the two planets is the same, so

So we can write

We also know that the mass of planet A is only sixty percent that of planet B, so

Substituting,

Now we can elimanate G, MB and m from the equation, and we get

So the ratio between the radii of the two planets is

Answer:
Part a)

Part b)

Explanation:
Part a)
As we know that initially the position vector is r
then the same magnitude position vector is rotated by 40 degree angle
so displacement magnitude is the magnitude of change in position vector
so it is given as




Part b)
now we need to find the direction of the displacement vector
so let say it makes an angle with x axis so we have


