<span>The answer is Mathias Schleiden and <span><span>Theodor Schwann</span></span></span>
Given that.
F=3•i+4•j
And it from point (0,0)m to (5,6)m
dx=final position - initial position
dx=(5,6)-(0,0)
dx=(5,6)m
dx=5•i +6•j
Work done by the force is give by
W = F•dx
W=F•dx
Note that i•i=j•j=1 and i•j=j•i=0
Then,
W=(3i+4j)•(5i+6j)
Therefore,
W=3i•(5i+6j)+4j•(5i+6j)
W=15i•i+18i•j+20j•i+24j•j
W=15+0+0+24
W=39J
Then the work done by the force is 39 Joules
The force per unit of length between two wires carrying current is

where I1 and I2 are the currents in the two wires, while r is the distance between them.
We can see from the formula that the force is proportional to the product between I1 and I2:

so, if we double both I1 and I2, we get a factor 4:

so, the force between the wires will be 4 times the original value.