To solve this problem, we will get f and then we will use it to calculate the power.
So, for this farsighted person,
do = 25 cm and di = -80
Therefore:
1/f = (1/25) + (1/-80) = 0.00275 = 0.275 m
Power = 1/f = 1/0.275 = +3.6363 Diopeters.
This means that the lens is converging.
Answer:
Explanation:
The electric flux is defined as the multiple of electric field and the area that the electric field passes through, such that
When calculating the electric flux, the angle between the directions of electric field and the area becomes important, especially if the angle is changing with time.
The above formula can be rewritten as follows
where θ is the angle between the electric field and the area of the loop. Note that, the direction of the area of the loop is perpendicular to the plane of the loop.
If the loop is rotating with constant angular velocity ω, then the angle can be written as follows
At t = 0, cos(0) = 1 and the electric flux through the loop is at its maximum value.
Therefore the electric flux can be written as a function of time
Answer:
2.64 x 10⁻⁶T
Explanation:
The magnitude of the magnetic field produced by a long straight wire carrying current is given by Biot-Savart law as follows: "The magnetic field strength is directly proportional to the current on the wire and inversely proportional to the distance from the wire". This can be written mathematically as;
B = (μ₀ I) / (2π r) ----------------(i)
B is magnetic field
I is current through the wire
r is the distance from the wire
μ₀ is the magnetic constant = 4π x 10⁻⁷Hm⁻¹
From the question;
I = 0.7A
r = 0.053m
Substitute these values into equation (i) as follows;
B = (4π x 10⁻⁷ x 0.7) / (2π x 0.053)
B = 2.64 x 10⁻⁶T
Therefore the approximate magnitude of the magnetic field at that location is 2.64 x 10⁻⁶T
Here is the highly detailed, arcane, complex, technical form of Ohm's Law that is needed in order to answer this question ===> I = V / R .
Current = (voltage) / (resistance)
Current = (1.5 V) / (10 Ω)
<em>Current = 0.15 Ampere</em>