Answer:
29.5 m/s
Explanation:
Volumetric flowrate = (average velocity of flow) × (cross sectional area)
Volumetric flowrate = 0.111 liters/s = 0.000111 m³/s
Cross sectional Area of flow = πr²
Diameter = 0.00579 m,
Radius, r = d/2 = 0.002895 m
A = π(0.002895)² = 0.0000037629 m²
Velocity of flow = (volumetric flow rate)/(cross sectional Area of flow)
v = 0.000111/0.0000037629
v = 29.5 m/s
If
SO3(g)
is removed from the following reaction, will the equilibrium shift to the left, shift to the right, or stay the same? Explain.
2SO2(g)+O2(g)⇋2SO3(g);ΔH
Explanation: The reaction shown in the question is a combination reaction between sulfur dioxide gas and oxygen gas, forming sulfur trioxide gas by the two gases combining into one product. The question's objective is to determine the direction in which the equilibrium will shift if sulfur trioxide is removed. Removing the products from the container during a reversible chemical reaction means that only the forward reaction will proceed right after the products are removed. Once more of the products are formed, the reverse reaction will start to occur.
But, when the product is removed, the system will compensate for the removal of the product by increasing the production of the product, which is done by increasing the rate of the forward reaction and shifting the equilibrium to the right.
<span>when it returns to its original level after encountering air resistance, its kinetic energy is
decreased.
In fact, part of the energy has been dissipated due to the air resistance.
The mechanical energy of the ball as it starts the motion is:
</span>

<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>
Answer:
the answer is the spinning of the moon lets us see different amounts of light
Explanation:
you wanna know why uh yes ok lets cut to the magic so when the moon.
Energy is "the ability to do work". Energy is how things change and move. It takes energy to cook food, to drive to school, and to jump in the air. Different forms of Energy. Energy can take a number of different forms.