1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harina [27]
3 years ago
11

After soccer practice, Coach Miller goes to the roof of the school to retrieve the errant soccer balls. The height of the school

is 3.5 m 3.5 m. He kicks a soccer ball which leaves the roof with a horizontal velocity, but no vertical velocity. Ignoring air resistance, which of the following values indicates how much horizontal velocity is needed for the ball to reach the soccer field located 22 m 22 m from the school?
Physics
1 answer:
blsea [12.9K]3 years ago
3 0
With gravitational acceleration at 9.8, initial height at 3.5m and distance at 22m the initial horizontal velocity is 26.03 ms and the flight time is .845 seconds
You might be interested in
An uncharged, nonconducting, hollow sphere of radius 10.0cm surrounds a 10.0-μC charge located at the origin of a Cartesian coor
MrMuchimi

The electric flux through the hole is 56.45\ webber .

  • Electric flux is the number of electric field lines cutting through the surface and is measured as surface intregal of electric field over that surface
  • Mathematically it is given by \phi_E=E.A \ Nm^2/C where E is the electric field and A is the area.
  • Gauss's law states that electric flux through closed surface is equal to the 1 / ε₀ times the charge enclosed by that surface which is given by  Ф = q / ε₀ where q is the central charge and ε₀ is the permittivity of the medium.

It is given , hollow sphere of radius 10.0cm surrounds a 10.0-μC charge.

The whole surface of hollow sphere = 4\pi r^2

                                                            = 4\times 3.14\times  (10 \times  10^{-2})^2 \\\\= 12.56\times 10^{-2} m^2

Area of the hole ( both side ) = 2\times \pi  r^2

                                               = 2\times 3.14 \times  (10^-^3)^2\\= 6.28 \times 10^-^6 m^2

According to Gauss's theorem, the flow from a particular charge in the center is given by

 \phi=  \frac{10\times10^-^6}{8.85\times 10^-^1^2}\\\\\phi=1.13\times10^6

This flux flows through the surface of the sphere, so the flux  per unit area which is given by

= \frac{ 1.13\times 10^6 }{ 12.56\times 10^-^2} \\\\= 8.99 \times 10^6 \  weber / m^2

Flux through area of hole is given by :

=  8.99\times10^6 \times6.28 \times 10^-^6\\ = 56.45 \ weber

Learn about more electric flux here :

brainly.com/question/26289097

#SPJ4

8 0
2 years ago
How many lines per mm are there in the diffraction grating if the second order principal maximum for a light of wavelength 536 n
grandymaker [24]

To solve this problem it is necessary to apply the concepts related to the principle of superposition and the equations of destructive and constructive interference.

Constructive interference can be defined as

dSin\theta = m\lambda

Where

m= Any integer which represent the number of repetition of spectrum

\lambda= Wavelength

d = Distance between the slits.

\theta= Angle between the difraccion paterns and the source of light

Re-arrange to find the distance between the slits we have,

d = \frac{m\lambda}{sin\theta }

d = \frac{2*536*10^{-9}}{sin(24)}

d = 2.63*10^{-6}m

Therefore the number of lines per millimeter would be given as

\frac{1}{d} = \frac{1}{2.63*10^{-6} }

\frac{1}{d} = 379418.5\frac{lines}{m}(\frac{10^{-3}m}{1 mm})

\frac{1}{d} = 379.4 lines/mm

Therefore the number of the lines from the grating to the center of the diffraction pattern are 380lines per mm

6 0
3 years ago
What measures the radiation given off by earth
gladu [14]
 i thinkits an instrument called seismograph. not sure
3 0
3 years ago
Please help! Will give brainly, 50 points!! I'm stuck with this question and I don't get it!!
IrinaVladis [17]

Answer:

3.52176 x 10^-10 N

Explanation:

Fg = 3.52176 x 10^-10 Newton

8 0
3 years ago
Please help..................​
worty [1.4K]

Answer:

PART A

In a solid

The attractive forces keep the particles together tightly enough so that the particles do not move past each other. ... In the solid the particles vibrate in place. Liquid – In a liquid, particles will flow or glide over one another, but stay toward the bottom of the container.

In a liquid

Particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles.

A gas

The particles move rapidly in all directions, frequently colliding with each other and the side of the container. With an increase in temperature, the particles gain kinetic energy and move faster.

PART B

The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert small force on the wall The pressure exerted by the gas is due to the sum of all these collision forces. The more particles that hit the walls, the higher the pressure.

Explanation:

GOOD LUCK!!! :)

7 0
2 years ago
Other questions:
  • PLZ ANSWER ASAP
    13·1 answer
  • A Michelson interferometer uses light with a wavelength of 452.446 nm. Mirror M2 is slowly moved a distance x, causing exactly 2
    12·1 answer
  • Compare how a positively charged object and a negatively charged object interact with a neutral object
    6·2 answers
  • Ocean currents are caused by water's density differences. The density differences in the ocean water are due to different salt c
    13·2 answers
  • A pendulum is swinging back and forth with a period of 2.0 seconds here on Earth. This pendulum is then brought to the Moon, whe
    8·1 answer
  • Two bicycle tires are set rolling with the same initial speed of 3.30 m/s along a long, straight road, and the distance each tra
    12·1 answer
  • How can i solve this​
    11·1 answer
  • What is the most likely elevation of point B?<br>a. 150 ft<br>b. 200 ft<br>c. 125 ft<br>d. 225 ft​
    5·2 answers
  • HELPPPPPPPPPPPPPPPPPP OMGGGGGGGGGGGGGGGGGGGGGGG
    9·1 answer
  • a force of 1.35 newtons is required to accelerate a book by 1.5 meters/second2 along a frictionless surface. what is the mass of
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!