How might a suit of armor be a good analogy for a function of the skeletal system?
It's a frame for your body and protects organs and armor protects your body from injury
Find the electric flux and the disp at t=0.50ns
<span>Given: </span>
<span>Resistor R = 160 Ω </span>
<span>Voltage ε = 22.0 V </span>
<span>Capacitor C = 3.10 pF = 3.10 * 10^-12 F </span>
<span>time t = 0.5 ns = 0.5 * 10^-9 s </span>
<span>ε0 = 8.85 * 10^-12 </span>
<span>Solution: </span>
<span>ELECTRIC FLUX: </span>
<span>Φ = Q/ε0 </span>
<span>we have ε0, we need to find Q the charge </span>
<span>STEP 1: FIND Q </span>
<span>Q = C ε ( 1 - e^(-t/RC) ) </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 1 - e^(- 0.5 * 10^-9 / 160 *3.10 * 10^-12 ) } </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 1 - 0.365 } </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 0.635 } </span>
<span>Q = 43.31 * 10^-12 C </span>
<span>STEP 2: WE HAVE Q AND ε0 > >>> SOLVE FOR ELECTRIC FLUX >>> </span>
<span>Φ = Q/ε0 </span>
<span>Φ = { 43.31 * 10^-12 C } / { ε0 = 8.85 * 10^-12 } </span>
<span>Φ = 4.8937 = 4.9 V.m </span>
<span>DISPLACEMENT CURRENT </span>
<span>we use the following equation: </span>
<span>I = { ε / R } { e^(-t/RC) } </span>
<span>I = { 22 / 160 } { e^(- 0.5 * 10^-9 / 160 *3.10 * 10^-12 ) } </span>
<span>I = { 0.1375 } { 0.365 } </span>
<span>I = 0.0502 A = 0.05 A </span>
Usually nice weather , i dont know the answer to the second part
Let be the average acceleration over the first 2.46 seconds, and the average acceleration over the next 6.79 seconds.
At the start, the car has velocity 30.0 m/s, and at the end of the total 9.25 second interval it has velocity 15.2 m/s. Let be the velocity of the car after the first 2.46 seconds.
By definition of average acceleration, we have
and we're also told that
(or possibly the other way around; I'll consider that case later). We can solve for in the ratio equation and substitute it into the first average acceleration equation, and in turn we end up with an equation independent of the accelerations:
Now we can solve for . We find that
In the case that the ratio of accelerations is actually
we would instead have
in which case we would get a velocity of
Answer:
At the instant shown in the diagram, the car's centripetal acceleration is directed is discussed below in detail.
Explanation:
The direction of the centripetal acceleration is in a circular movement is forever towards the middle of the roundabout pathway. In the picture displayed, the East direction is approaching the center. So, the course of the car's centripetal acceleration is (H) toward the east.