Answer:
Gene Sarazen began to win tournaments in 1935 with a new club he had invented that was specialized for sand play. He is hailed as the inventor of the sand wedge.
Explanation:
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six classical simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width.[1][2] Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle.
The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported.
The wedge simply transports energy and collects it to the pointy end, consequently breaking the item. In this way, much pressure is put on a thin area.
The angle of inclination is calculated using sin
function,
sin θ = 5 m / 20 m = 0.25
θ = 14.4775°
<span>The net force exerted is then calculated:
F net = m g sin θ = 20 * 9.8 * 0.25 </span>
F net = 49N
<span>Work is product of net force and distance:
W = F net * d = 49 * 20 </span>
<span>Work = 980 J </span>
The area under the velocity time graph is 125 m and the meaning of the area is displacement.
<h3>
What is area under velocity - time graph?</h3>
The area under a velocity time graph represents the displacement of the object.
total area of the graph = A1 + A2
total area of the graph = ¹/₂ (base₁)(height₁) + ¹/₂ (base₂)(height₂)
total area of the graph = ¹/₂(4)(40) + ¹/₂(3)(30)
total area of the graph = 125 m
Thus, the area under the velocity time graph is 125 m and the meaning of the area is displacement.
Learn more about velocity time graph here: brainly.com/question/4710544
#SPJ1