Answer:
(2) Adding more O2(g) would shift the equilibrium to the right because a higher concentration of oxygen is offered than its initial position, therefore more products have to be yielded to maintain equilibrium.
Explanation:
Answer:
2 L
Explanation:
From the question given above, the following data were obtained:
Molarity of LiF = 2 M
Mole of LiF = 4 moles
Volume =?
Molarity of a solution is simply defined as the mole per unit litre of the solution. Mathematically, it is expressed as:
Molarity = mole / Volume
With the above formula, we can obtain the volume of the solution as shown below:
Molarity of LiF = 2 M
Mole of LiF = 4 moles
Volume =?
Molarity = mole / Volume
2 = 4 / volume
Cross multiply
2 × volume = 4
Divide both side by 2
Volume = 4/2
Volume = 2 L
Therefore, the volume of the solution is 2 L.
Explanation:
k so basically u gotta do 59/1000000 then multiply that by 972 which gives u 0.057348
Answer:
The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.
Explanation:
Thermodynamic work is called the transfer of energy between the system and the environment by methods that do not depend on the difference in temperatures between the two. When a system is compressed or expanded, a thermodynamic work is produced which is called pressure-volume work (p - v).
The pressure-volume work done by a system that compresses or expands at constant pressure is given by the expression:
W system= -p*∆V
Where:
- W system: Work exchanged by the system with the environment. Its unit of measure in the International System is the joule (J)
- p: Pressure. Its unit of measurement in the International System is the pascal (Pa)
- ∆V: Volume variation (∆V = Vf - Vi). Its unit of measurement in the International System is cubic meter (m³)
In this case:
- p= 10 atm= 1.013*10⁶ Pa (being 1 atm= 101325 Pa)
- ΔV= 2 L- 20 L= -18 L= -0.018 m³ (being 1 L=0.001 m³)
Replacing:
W system= -1.013*10⁶ Pa* (-0.018 m³)
Solving:
W system= 18234 J
<u><em>The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.</em></u>