Answer:
idk search it on google chrome
Explanation:
Answer:
Velocity and speed both are continuously increasing.
Acceleration is constant.
Explanation:
Speed is defined as length of path covered by a body per unit time. Speed is a scalar quantity that consist of magnitude only and not direction.
Velocity is defined as the displacement per unit times. Displacement is the shortest distance between the two points. It is a vector quantity and hence has a direction in the direction of displacement along with its own magnitude.
- Both velocity and speed have same unit of measure which is meter per second in S.I. During <em>free fall</em> in the absence of any air resistance the velocity and speed both will be having a vertical downward direction with continuously increasing magnitude. Tough we are not concerned about the direction when discussing about speed but here both are equal since the motion is linear.
Acceleration is the rate of change in velocity of a body which is a vector quantity. For speed we are concerned about instantaneous acceleration since for a short period of time it may have a specific direction.
- During free fall the acceleration is of a body is equal to the acceleration due to gravity and constant when the height of fall is much lesser than the radius of the earth.
Motion is detected when an object changes its position with respect to a reference point. Coordinate system is basically used to represent motion. A coordinate system uses numbers or coordinates which represent position of the reference points on a two-dimensional or three-dimensional space. The trajectory of a point or line can be studied on a coordinate system which describes various aspects of motion like velocity, acceleration, distance, displacement etc. Coordinate system is important because it helps to choose a starting point and the direction (which will be positive).
<span>A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds; or through the sharing of electrons as in covalent bonds.
</span>