Answer:
B.
It will be greater than 10 J.
Explanation:
The total mechanical energy of an object is the sum of its potential energy (PE) and its kinetic energy (KE):
E = PE + KE
According to the law of conservation of energy, when there are no frictional forces on an object, its mechanical energy is conserved.
The potential energy PE is the energy due to the position of the object: the highest the object above the ground, the highest its PE.
The kinetic energy KE is the energy due to the motion of the object: the highest its speed, the largest its KE.
Here at the beginning, when it is at the top of the roof, the baseball has:
PE = 120 J
KE = 10 J
So the total energy is
E = 120 + 10 = 130 J
As the ball falls down, its potential energy decreases, since its height decreases; as a result, since the total energy must remain constant, its kinetic energy increases (as its speed increases).
Therefore, when the ball reaches the ground, its kinetic energy must be greater than 10 J.
Answer:
D
Explanation:
Because it is impossible for it to show the real depth of the ocean and how deep it is
Well, you gave us the formula to calculate power from work and time,
but you didn't give us the formula for work. We have to know that.
Work = (force) x (distance)
The work to raise Sara to the top of the hill is
Work = (300 N) x (15 meters)
= 4,500 newton-meters = 4,500 joules .
Now we're ready to use the formula that you gave us. (Thank you.)
Power = (work) / (time)
= (4,500 joules) / (10 seconds)
450 joules/second = 450 watts.
The correct answer is - a. was a sign of danger.
Once the people saw that the ocean waters are receding and were living vast space without water behind them, they knew that something big and very dangerous will happen. And in fact it did. The water that was sucked in in the place were there was a crack on the ocean floor, got shot back under big pressure and it had very big speed, as well as having waves that were destroying anything on their way.
Answer:
B. Light passes through a small opening
Explanation:
Diffraction is one of the properties of wave defined as the bending of wave around corners. It occurs mostly when waves passes through a tiny opening or slit. The type of waveform generated by the wave depends on the type of opening or slit that the medium passes through. The opening can be tiny or large.
Based on the definition, it can be inferred that the situation that causes light waves to diffract is when the light passes through a small opening. For example, the light of a torch passing through a tiny door hole is diffraction.