The spring has been extended for 3.5 m
<u>Explanation:</u>
We have the formula,
PE =1/2 K X²
Rewrite the equation as
PE=1/2 K d²
multiply both the sides by 2/K to simplify the equation
2/k . PE= 1/2 K d² . 2/K
√d²=√2PE/K
Cancelling the root value and now we have,
d=√2PE/k
d=√2×98 J / 16N/m
d=√12.25
d=3.5 m
The spring has been extended for 3.5 m
<u />
<u />
Answer:
-3 m/s²
Explanation:
The formula for deceleration is given as the change in speed over a period of time
Given that,
Initial speed = 15 m/s
Final speed = 3 m/s
change in speed= 3-15= -12 m/s
Time taken= 4 sec
Deceleration = -12/4 = -3 m/s²
To solve this problem we will use the concept of electric field, with which we will make the proportional comparison as we move away from the center. So we have the maximum electric field is given as,

Where,
Q = Charge
R = Radius
Electric field inside the sphere is given as,




Electric field outside the sphere is given as,



Therefore the possible values are 3.5cm and 9.9cm: The correct answer is D.
Width of the fringes gets decreased if the distance between the slits is increased and thus we get narrower fringes.
What is Young's double-slit experiment?
- In modern physics, the double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena.
- This type of experiment was first performed, using light, by Thomas Young in 1802, as a demonstration of the wave behavior of light.
- A wave is split into two separate waves (the wave is typically made of many photons and better referred to as a wave front (not to be confused with the wave properties of the individual photon)) that later combine into a single wave.
- Changes in the path-lengths of both waves result in a phase shift, creating an interference pattern.
- A coherent light source, such as a laser beam, illuminates a plate pierced by two parallel slits, and the light passing through the slits is observed on a screen behind the plate.
- The wave nature of light causes the light waves passing through the two slits to interfere, producing bright and dark bands on the screen – a result that would not be expected if light consisted of classical particles. However, the light is always found to be absorbed at the screen at discrete points, as individual particles (not waves); the interference pattern appears via the varying density of these particle hits on the screen.
- Furthermore, versions of the experiment that include detectors at the slits find that each detected photon passes through one slit (as would a classical particle), and not through both slits (as would a wave).
- However, such experiments demonstrate that particles do not form the interference pattern if one detects which slit they pass through. These results demonstrate the principle of wave-particle duality.
To learn more about Young's double-slit experiment: brainly.com/question/28108126
#SPJ4