Answer:
Explanation:
Given
Initial speed is u=V
Maximum height of Pebble is H
Deriving maximum height of Pebble and considering motion in vertical direction

where v=final velocity
u=initial velocity
a=acceleration
s=Displacement
Final velocity will be zero at maximum height


i.e. maximum height is dependent on square of initial velocity
for twice the height

on comparing
<u>We are given:</u>
Mass of Neptune = 1.03 * 10²⁶ kg
Distance from the center of Neptune (r) = 2.27 * 10⁷
now, computing the value of the acceleration due to gravity (g)
<u>Finding g:</u>
We know the formula:
g = G(mass of planet) / (r)²
g = [6.67 * 10⁻¹¹ * 1.03*10²⁶] / (2.27*10⁷) [since G is 6.67*10⁻¹¹]
g = (6.87 * 10¹⁵) / (5.15 * 10¹⁴)
which can be rewritten as:
g = (6.87 * 10¹⁵ * 10⁻¹⁴) / 5.15
g = (6.87 * 10¹⁵⁻¹⁴) / 5.15
g = (6.87/5.15) * 10
g = 1.34 * 10
g = 13.4 m/s² <em>(approx)</em>
Answer:
Angle of incidence = 20°
Angle of reflection = 20°
Explanation:
Applying,
The first Law of Refraction: The incident ray, the reflected ray and the normal at the point of incidence all lies in the plane.
From the diagram,
Angle of incidence = 90-70
Angle of incidence = 20°
From the law of reflection,
Angle of incidence = Angle of reflection
Therefore,
Angle of reflection = 20°
The core of a star must be at the temperature of 10,000,000 degrees Celsius for hydrogen fusion to begin.
You would see mountains off in the distance as if the earth was actually flat. but it seems flat because its so big